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EXECUTIVE SUMMARY 
 
Wolf recovery in Montana began in the early 1980’s. The federal wolf recovery goal of 30 breeding pairs 
for 3 consecutive years in the Northern Rocky Mountains (NRM) of Montana, Idaho and Wyoming was 
met by 2002. Montana’s state Wolf Conservation and Management Plan of 2004 was based on the work 
of a citizen’s advisory council and was approved by the United States Fish and Wildlife Service (USFWS). 
The wolf population in the NRM tripled between the time recovery goals were met and when wolves 
were ultimately delisted by congressional action during 2011. At present, Montana Fish, Wildlife and 
Parks (FWP) implements the 2004 state management plan using a combination of sportsman license 
dollars and federal Pittman-Robertson funds (excise tax on firearms, ammunition, and hunting 
equipment) to monitor the wolf population, regulate harvest, collar packs in livestock areas, coordinate 
and authorize research, and direct problem wolf control under certain circumstances.  
 
The primary means of monitoring wolf distribution, numbers, and trend in Montana is now Patch 
Occupancy Modeling, or “POM.” The POM method uses annual hunter effort surveys, known wolf 
locations, habitat covariates, and estimates of wolf territory size and pack size to estimate wolf 
distribution and population size across the state. POM estimates of wolf population size are the 
preferred monitoring method due to accuracy, confidence intervals, and cost efficiency. The 2019 POM 
estimate of wolf population size was 833 wolves (95% C.I. = 665 – 1,021; Fig. 1). FWP is currently 
working with the University of Montana to refine POM by incorporating contemporary data (after 
initiation of a wolf hunting and trapping season) on territory and pack sizes derived with improved collar 
technology.  
 
Wolf hunting was recommended as a management tool in the 2004 Montana Wolf Conservation and 
Management Plan. Calendar year 2019 included parts of two hunting/trapping seasons for wolves. 
During calendar year 2019, 141 wolves were harvested during the spring, and 157 wolves were 
harvested during the fall for a total of 298 (Fig. 1). Sales of license year 2019/20 wolf hunting licenses 
generated $414,738 for wolf monitoring and management in Montana.  
 
Wildlife Services (WS) confirmed the loss of 94 livestock to wolves during 2019, including 69 cattle and 
21 sheep, 2 goats, and 2 mini horses; three livestock guard dogs were also killed by wolves (Fig. 1). This 
total was similar to numbers during 2011-2018. During 2019 the Montana Livestock Loss Board paid 
$82,450 for livestock that were confirmed by WS as killed by wolves or probable wolf kills. Fifty-nine 
wolves were killed in response to depredation or to reduce the potential for further depredation. Of the 
59 wolves, 43 were killed by WS and 16 were lawfully taken by private citizens. FWP’s Wolf Specialists 
radio-collared 12 wolves during 2019 to meet the legislative requirement for collaring livestock packs 
and to aid in population monitoring and research efforts. 
 
Montana’s wolf population grew steadily from the early 1980’s when there were less than 10 in the 
state.  After wolf numbers approached 1,000 in 2011 and wolves were delisted, the wolf population has 
decreased slightly and may be stabilizing at about 850 wolves (Fig. 1). Stabilization of population size 
may be related to the onset of wolf hunting and trapping seasons, whereas reduced livestock 
depredation in recent years is most likely related to more aggressive depredation control actions 
(DeCesare et al. 2018). Montana’s wolf population remains well above requirements (5-6x). Wolf license 
sales have generated $4.2 million for wolf management and monitoring since 2009.  
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Figure 1. Patch Occupancy Modeling (“POM”) estimated number of wolves in Montana (including 95% 
confidence intervals) and verified minimum number of wolves residing in Montana in relation to state 
wolf plan requirements along with trends in wolf harvest and confirmed livestock losses due to wolves, 
1998 – 2019.   
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1. BACKGROUND 
 
Wolf recovery in Montana began in the early 1980’s. Wolves increased in number and 
distribution because of natural emigration from Canada and successful federal and tribal efforts 
that reintroduced wolves into Yellowstone National Park and the wilderness areas of central 
Idaho. The federal wolf recovery goal of 30 breeding pairs for 3 consecutive years in Montana, 
Idaho and Wyoming was met during 2002, and wolves were declared to have reached biological 
recovery by the U.S. Fish and Wildlife Service (USFWS) that year. During 2002 there were a 
minimum of 663 wolves and 43 breeding pairs in the Northern Rocky Mountains (NRM).  
 
The Montana Gray Wolf Conservation and Management Plan was approved by the USFWS in 
2004. Nine years after having been declared recovered and with a minimum wolf population of 
more than 1,600 wolves and 100 breeding pairs in the NRM, in April 2011, a congressional 
budget bill directed the Secretary of the Interior to reissue the final delisting rule for NRM 
wolves. On May 5, 2011 the USFWS published the final delisting rule designating wolves 
throughout the Distinct Population Segment (DPS), except Wyoming, as a delisted species.  
 
Beginning with delisting in May 2011, the wolf was reclassified as a Species in Need of 
Management in Montana. Montana’s laws, administrative rules, and state plan replaced the 
federal framework. The Montana Wolf Conservation and Management Plan is based on the 
work of a citizen’s advisory council. The foundations of the plan are to recognize gray wolves as 
a native species and a part of Montana’s wildlife heritage, to approach wolf management 
similar to other wildlife species such as mountain lions, to manage adaptively, and to address 
and resolve conflicts. As noted in the State Plan, “Long-term persistence of wolves in Montana 
depends on carefully balancing the complex biological, social, economic, and political aspects of 
wolf management.” 
 
At present, Montana Fish, Wildlife and Parks (FWP) implements the state management plan 
using a combination of sportsman license dollars and federal Pittman-Robertson funds (excise 
tax on firearms, ammunition, and hunting equipment) to monitor the wolf population, regulate 
sport harvest, coordinate and authorize research, and direct problem wolf control under certain 
circumstances. Several state statutes also guide FWP’s wolf program. FWP and partners have 
placed increasing emphasis on proactive prevention of livestock depredation. USDA Wildlife 
Services (WS) continues to investigate injured and dead livestock, and FWP works closely with 
them to resolve conflicts. Montana’s Livestock Loss Board compensates producers for losses to 
wolves and other large carnivores.  
 
Montana wolf conservation and management has transitioned to a more fully integrated 
program since delisting. With wolf population level securely above requirements for over a 
decade, FWP continues to adapt the wolf program to match resources and needs. For years, 
when the population was small and wolves were listed, a “wolf weekly” report was issued, 
detailing all depredations, collaring, control and known mortalities. That level of detail and its 
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associated expense is no longer warranted, and the information is now reported annually. This 
allows limited personnel time and conservation dollars to be allocated more effectively.  
 
Population monitoring techniques have also changed. Wolf packs were intensively monitored 
year-round beginning with their return to the northwestern part of Montana in the 1980’s. 
Objectives for monitoring during the period of recovery were driven by the USFWS’s recovery 
criteria – 30 breeding pairs for 3 consecutive years in Montana, Idaho, and Wyoming. Similar 
metrics of population status were used from the time recovery criteria were met in 2002, 
through delisting in 2011, and for the 5 years when the USFWS retained oversight after 
delisting. These population monitoring criteria and methods were appropriate and achievable 
when the wolf population was small and recovering. For instance, in 1995, when wolves were 
reintroduced into Yellowstone National Park and central Idaho, the end-of-year count for 
wolves residing in Montana was 66. In the early years, most wolf packs had radio-collared 
individuals and intensive monitoring was possible to identify new packs and most individuals 
within packs. However, in later years, the minimum count of wolves approached or exceeded 
500 individuals distributed across more than 25,000 square miles of mostly rugged and remote 
terrain in western Montana. Therefore, the ability to count every pack, every wolf, and every 
breeding pair has become expensive, unrealistic, and unnecessary. Consequently, FWP has 
moved to more cost-effective methods for monitoring wolves. These methods can be more 
accurately described as population estimates that account for uncertainty (confidence 
intervals), as opposed to a minimum count where the end result, at this time when populations 
are large, reflects total effort (and dollars spent) as much as population numbers. 
 
FWP first began considering alternative approaches to monitoring the wolf population in 2006 
through a collaborative effort with the University of Montana Cooperative Wildlife Research 
Unit. The primary objective was to find an alternative approach to wolf monitoring that would 
yield statistically reliable estimates of the number of wolves, the number of wolf packs, and the 
number of breeding pairs (Glenn et al. 2011). Ultimately, a method applicable to a sparsely 
distributed and elusive carnivore population was developed that used hunter observations as a 
cost-effective means of gathering biological data to estimate the area occupied by wolves in 
Montana - “Patch occupancy modelling” (POM; Rich et al. 2013a).  
 
POM is a modern, scientifically valid, and financially efficient means of monitoring wolves. POM 
is the best and most efficient method to document wolf population numbers and trend at this 
point in time. FWP is confident that the wolf population estimate and trend that POM provides 
is sufficient and scientifically valid evidence that can be used to assess wolf status relative to 
the criteria outlined in Montana’s Wolf Conservation and Management Plan. Minimum counts 
and pack tables are no longer reported. Instead, the more appropriate and efficient techniques 
that have been in development for a decade are being used. If new and improved techniques 
become available in the future, those methods may be implemented when appropriate.   
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2. WOLF POPULATION MONITORING 
 
2.1 Wolf Distribution and Numbers via Patch Occupancy Modeling 
 
We used patch occupancy modeling to estimate the distribution and number of wolves in 
Montana (Rich et al. 2013). The general method was to 1) estimate the area occupied by wolves 
in packs, 2) estimate the numbers of wolf packs by dividing area occupied by average territory 
size and correcting for overlapping territories, and 3) estimate the numbers of wolves by 
multiplying the number of estimated packs by average annual pack size and accounting for lone 
wolves (Fig. 2).  
 
Patch Occupancy Modelling Methods 
To estimate the area occupied by wolf packs from 2007 to 2019, we used a multi-season false-
positives occupancy model (Miller et al. 2013) using program PRESENCE (Hines 2006). First, we 
created an observation grid for Montana with a cell size large enough to ensure observations of 
packs across sample periods, yet small enough to minimize the occurrences of multiple packs in 
the same cell on average (cell size = 600 km2). We used locations of wolves in packs (2-25 
wolves) reported by a random sample of unique deer and elk hunters during FWP annual 
Hunter Harvest Surveys and assigned the locations to cells. We modeled detection probability, 
initial occupancy, and local colonization and local extinction from 5, 1-week encounter periods 
along with verified locations using covariates that were summarized at the grid level. Verified 
wolf pack locations (centroids), were used to estimate probabilities of false detection. We 
estimated patch-specific estimates of occupancy and estimated the total area occupied by wolf 
packs by multiplying patch-specific estimates of occupancy by their respective patch size and 
then summing these values across all patches. Our final estimates of the total area occupied by 
wolf packs were adjusted for partial cells on the border of Montana and included model 
projections for tribal lands and national parks where no hunter survey data were available.  
 
Model covariates for detection included hunter days per km2 by hunting district per year (an 
index to spatial effort), proportion of wolf observations that were mapped (an correction for 
effort), low use forested and non-forested road densities (indices of spatial accessibility), a 
spatial autocovariate (the proportion of neighboring cells with wolves seen out to a mean 
dispersal distance of 100 km), and patch area sampled (because smaller cells on the border of 
Montana, parks, and tribal lands have less hunting activity and therefore less opportunity for 
hunters to see wolves). Model covariates for occupancy, colonization, and local extinction 
included a principal component constructed from several autocorrelated environmental 
covariates (percent forest cover, slope, elevation, latitude, percent low use forest roads, and 
human population density), and recency (the number of years with verified pack locations in 
the previous 5 years). 
 
To estimate area occupied in each year, we calculated unconditional estimates of occupancy 
probabilities which provided probabilities for sites that were not sampled by Montana hunters 
(such as national parks and tribal lands). We accounted for uncertainty in occupancy estimates 
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Figure 2. Schematic for method of estimating the number of wolves in Montana, 2007-2019.  
using a parametric bootstrap procedure on logit distributions of occupancy probabilities. For 
each set of bootstrapped estimates, we calculated area occupied. The 95% confidence intervals 
(C.I.s) for these values were obtained from the distribution of estimates calculated from the 
bootstrapping procedure. 
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To predict the total number of wolf packs in Montana from 2007 to 2019 we first established an 
average territory size for wolf packs in Montana. Rich et al. (2012) calculated 90% kernel home 
ranges from radio telemetry locations of wolves collared and tracked by FWP wolf biologists for 
research and/or management from 2008 to 2009. We assumed the mean estimate of territory 
size from these data was constant during 2007-2019. For each year, we estimated the number 
of wolf packs by dividing our estimates of total area occupied by the mean territory size. We 
then accounted for annual changes in the proportion of territories that were overlapping (non-
exclusive) using the number of observed cells occupied by verified pack centers. We accounted 
for uncertainty in territory areas using a parametric bootstrap procedure and a log-normal 
distribution of territory sizes, and for each set of bootstrapped estimates we calculated mean 
territory size. The 95% C.I.s for these values were obtained from the distribution of estimates 
calculated from the bootstrapping procedure.  
 
To predict the total number of wolves in Montana from 2007 to 2019, we first calculated 
average pack size from the distribution of packs of known size. Pack sizes were established by 
FWP biologists for packs monitored for research and/or management. We used end-of-year 
pack counts for wolves documented in Montana from 2007 to 2019; we only used pack counts 
FWP biologists considered complete, i.e., good/moderate counts. Typically, intensively 
monitored packs with radio-collars provided complete counts more often than packs that were 
not radio-marked. For each year, we estimated total numbers of wolves in packs by multiplying 
the estimate of mean pack size by the annual predictions of number of packs. We accounted for 
uncertainty in pack sizes using a parametric bootstrap procedure and a Poisson distribution of 
pack sizes, and for each set of bootstrapped estimates we calculated mean pack size. The 95% 
C.I.s for these values were obtained from the distribution of estimates calculated from the 
bootstrapping procedure. We allowed pack sizes to vary by year but not spatially. 
 
Finally, our population estimate is for wolves in groups of 2 or more, therefore we factored in 
lone or dispersing wolves into the population estimate by adding 12.5%. Various studies have 
documented that on average 10-15% of wolf populations are composed of lone or dispersing 
wolves (Fuller et al. 2003). The state of Idaho adds 12.5% to account for lone wolves (Idaho 
Department of Fish and Game and Nez Perce Tribe 2012) and Minnesota adds 15% (Erb 2008). 
 
Results 
Area Occupied by Wolves in Packs 
From 2007 to 2019, between 50,026 and 82,375 hunters responded annually to the wolf 
sighting surveys. From their reported sightings, 1,064 to 3,469 locations of 2 to 25 wolves were 
determined each year during the 5, 1-week sampling periods. Percent of hunters reporting a 
wolf sighting ranged from 4.5% (2017) to 7.5% (2011).  
 
The top model of wolf occupancy showed positive associations between the initial probability 
that wolves occupied an area and an environmental principal component and recency. The 
probability that an unoccupied patch became occupied in subsequent years was positively 
related to an environmental principal component and recency. The probability that an occupied 
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patch became unoccupied in the following year was negatively associated with an 
environmental principal component. The probability that wolves were detected by a hunter 
during a 1-week sampling occasion was positively related to hunter days per hunting district per 
year, low use forest road density, low use non-forest road density, a spatial autocovariate, the 
proportion of observations mapped, and area sampled. The probability that wolves were falsely 
detected by a hunter during a 1-week sampling occasion was positively related to hunter days 
per hunting district per year, low use forest road density, low use non-forest road density, and a 
spatial autocovariate 
 
From 2007 to 2019, estimated area occupied by wolf packs in Montana ranged from 42,454 km2 
(95% CI = 42,060 to 43,479) in 2007 to 78,668 km2 (95% CI = 78,391 to 79,225) in 2012 (Table 1, 
Fig. 2). The predicted distribution of wolves from the occupancy model closely matched the 
distribution of field-confirmed wolf locations (verified pack locations and harvested wolves; Fig. 
3). Although the estimated area occupied nearly doubled between 2007 and 2012, the area 
occupied has stabilized since that time. The extent to which this stabilization represents a 
population responding to density dependent factors as available habitats become filled, versus 
a response to hunting and trapping harvest, is unknown.  
 
Number of Wolf Packs 
In 2008 and 2009, territory sizes from 38 monitored packs ranged from 104.70 km2 to 1771.24 
km2. Mean territory size was 599.83 km2 (95% C.I. = 478.81 to 720.86; Rich et al. 2012; Table 1, 
Fig.2). The annual territory overlap index ranged from 1.08 in 2008 to 1.33 in 2013 (Table 1, Fig. 
2). Accounting for territory overlap, estimated numbers of packs ranged from 79 (95% C.I. = 64 
to 97) in 2007 to 174 (95% C.I. = 141 to 211) in 2013 (Table 1, Fig. 2).  
 
Our estimate of the number of wolf packs assumes that territory size is constant and equal 
across space. If territory sizes were actually larger in some years or some areas, then the 
estimated number of packs in those years or areas would have been biased high, and if territory 
sizes were actually smaller in some years or some areas, then the pack estimates would have 
been biased low in those years or areas. Similarly, our estimates of territory overlap were 
indirect indices rather than field-based observations based on high-quality telemetry data. In 
future applications of this technique, the assumption of constant territory sizes could be 
improved by modeling territory size as a flexible parameter, incorporating estimates of inter-
pack buffer space or territory overlap into estimates of exclusive territory size, and 
incorporating spatially and temporally variable territory size predictions into estimates of pack 
numbers (See Appendix 2.1). 
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Table 1. Estimated area occupied by wolves, number of wolf packs, and number of wolves in Montana, 2007-2019. Annual numbers 
were based on best available information and were retroactively updated as patch occupancy modeling incorporated more 
information each year. 
 

2007 2008 2009 2010 2011 2012 2013
Estimated Area Occupied (km2) 42,454 52,540 63,064 65,123 72,700 78,668 78,084

(95% C.I.) (42,060 - 43,479) (52,248 - 53,297) (62,770 - 63,714) (64,814 - 65,764) (72,407 - 73,302) (78,391 - 79,255) (77,786 - 78,703)
Territory Size (km2) 599.83 599.83 599.83 599.83 599.83 599.83 599.83

(95% C.I.) (493.36 - 740.35) (493.36 - 740.35) (493.36 - 740.35) (493.36 - 740.35) (493.36 - 740.35) (493.36 - 740.35) (493.36 - 740.35)
Territory Overlap Index 1.12 1.08 1.13 1.16 1.26 1.27 1.33

Estimated Packs (600 km2 territories w/overlap) 79 94 119 126 153 166 174
(95% C.I.) (64 - 97) (77 - 115) (97 - 146) (102 - 154) (124 - 187) (135 - 202) (141 - 211)

Average Pack Size (complete counts) 7.03 6.65 6.37 6.16 5.71 4.96 5.66
(95% C.I.) (6.15 - 7.97) (5.96 - 7.35) (5.69 - 7.04) (5.51 - 6.86) (5.23 - 6.17) (4.49 - 5.46) (5.16 - 6.22)

Disperser/Loner Rate 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5%
Estimated Wolves Including Lone Wolves 629 706 854 873 983 928 1,106

(95% C.I.) (497 - 801) (563 - 886) (677 - 1,084) (688 - 1,081) (778 - 1,204) (737 - 1,143) (882 - 1,368)

2014 2015 2016 2017 2018 2019
Estimated Area Occupied (km2) 72,998 75,384 71,158 69,656 71,166 71,819

(95% C.I.) (72,760 - 73,676) (75,096 - 76,004) (70,894 - 71,837) (69,414 - 70,318) (70,885 - 71,794) (71,560 - 72,450)
Territory Size (km2) 599.83 599.83 599.83 599.83 599.83 599.83

(95% C.I.) (493.36 - 740.35) (493.36 - 740.35) (493.36 - 740.35) (493.36 - 740.35) (493.36 - 740.35) (493.36 - 740.35)
Territory Overlap Index 1.24 1.26 1.26 1.24 1.25 1.22

Estimated Packs (600 km2 territories w/overlap) 151 158 149 144 149 146
(95% C.I.) (122 - 184) (129 - 193) (121 - 181) (117 - 175) (120 - 181) (119 - 178)

Average Pack Size (complete counts) 5.39 5.61 4.96 5.38 4.98 5.08
(95% C.I.) (4.86 - 5.93) (5.08 - 6.15) (4.44 - 5.44) (4.9 - 5.83) (4.55 - 5.42) (4.63 - 5.51)

Disperser/Loner Rate 12.5% 12.5% 12.5% 12.5% 12.5% 12.5%
Estimated Wolves Including Lone Wolves 915 999 831 871 833 833

(95% C.I.) (728 - 1,144) (788 - 1,237) (657 - 1,036) (693 - 1,066) (673 - 1,027) (665 - 1,021)  
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Figure 3. Model predicted probabilities of occupancy by a wolf pack (ranging from low to high 
[green to red]), verified pack centers (large dots), and harvest locations (small dots) in 
Montana, 2019.  
 
Number of Wolves 
From 2007 to 2019, complete counts (classified as good or moderate quality) were obtained 
from 882 packs within Montana. Pack sizes ranged from 2 to 29 and mean pack sizes ranged 
from 7.03 (95% C.I. = 6.15 to 7.97) in 2007 to 4.96 (95% C.I. = 4.44 to 5.44) in 2016 (Table 1, Fig. 
2). Multiplying estimated packs by mean pack size and a multiplication factor of 1.125 to 
account for the percentage of the population presumed to be lone wolves (Mech and Boitani 
2003, p. 170) resulted in a low of wolves at 629 in 2007 to a high of wolves at 1,106 in 2013 
(Table 1, Fig. 2).  
 
Our estimate of the number of wolves is dependent on several assumptions. First, our 
population estimate assumes that missed packs are the same size as verified packs. If missed 
packs are smaller (e.g., recently established packs or packs interspersed among known packs), 
then our estimated number of wolves would be biased high. Also, our estimate assumes that 
pack size is constant and equal across space. Pack sizes that were actually larger in some years 
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or some areas would lead to underestimation of wolf numbers, and pack sizes that were 
smaller in some years or areas would lead to an overestimation of wolf numbers.  
 

3. WOLF MANAGEMENT 
 
3.1  Regulated Public Hunting and Trapping  
 
Regulated public harvest of wolves was recommended by the Governor’s Wolf Advisory Council 
and included in Montana’s Wolf Conservation and Management Plan that was approved by the 
USFWS during 2004. FWP has developed and implemented wolf harvest strategies that 
maintain a recovered and connected wolf population, minimize wolf-livestock conflicts, reduce 
wolf impacts on low or declining ungulate populations and ungulate hunting opportunities, and 
effectively communicate to all parties the relevance and credibility of the harvest while 
acknowledging the diversity of values among those parties. The Montana public has the 
opportunity for continuous and iterative input into specific decisions about wolf harvest 
throughout the public season-setting process. Wolf seasons are to be reviewed every other year 
by the Fish and Wildlife Commission during December (proposals) and February (final decisions). 
This timing allows discussion of ungulate and wolf seasons during the same Commission meetings.    
 
At the close of the 2019-20 wolf season (2019 License Year) on March 15, 2020, the harvest 
totaled 293 wolves taken during the 2019-20 season, including 163 taken by hunters (56%) and 
130 taken by trappers (44%). Both the 2018-19 and 2019-20 wolf seasons yielded higher levels of 
wolf harvest than previous years. An average of 66 more wolves were harvested during each of 
the past two seasons than on average during the previous 6 wolf seasons when both hunting and 
trapping were allowed (2012-2017). Most of the increase over the 6-year average occurred in 
Regions 1 and 2 via trapping (Table 2). Statewide wolf population appears to have peaked in 2013 
and has declined slightly since then, appearing to stabilize at around 850 wolves (Fig. 4). The total 
calendar-year 2019 wolf harvest in Montana was 298, including 141 wolves harvested during 
spring of the 2018-19 season and 157 wolves harvested during fall of the 2019-20 season.  
 
 
Table 2. Change in level of wolf harvest in Montana between the 2012-2017 seasons and the 
2018-2019 seasons by FWP Region and type of harvest. 

 
 
 

R1 R2 R3 R4 All R1 R2 R3 R4 All R1 R2 R3 R4 All
Hunt 43 32 61 8 144 54 37 57 16 164 11 5 -4 8 20
Trap 37 27 12 9 85 60 44 18 10 130 22 17 6 1 46

Total 80 59 73 17 229 114 81 75 26 294 33 22 2 9 66

2012-2017 Average Change2018-2019 Average
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Figure 4. Estimated wolf population size based on known mortalities anchored to December 31 
Patch Occupancy Modelling estimates, 2007 – 2019.  
 
During 2019, Montana sold 15,902 resident wolf hunting licenses ($19/each) and 2,252 non-
resident wolf hunting licenses ($50/each). Sale of these wolf licenses generated $414,738 for wolf 
management and monitoring in Montana (Fig. 5). Total funding generated for wolf monitoring and 
management by the sale of wolf hunting licenses from 2009-2019 is over $4.1 million. Because 
trapping licenses for both residents and non-residents are not wolf-specific, FWP cannot quantify 
the financial contribution that wolf trapping generates.  
 
 
 
 
 
 
 
 
 
 
Figure 5. Dollars generated for wolf conservation and management through sales of wolf 
hunting licenses in Montana, 1998-2019.   
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3.2 Wolf – Livestock Interactions in Montana 
 
Montana wolves routinely encounter livestock on both private land and public grazing 
allotments. Wolves are opportunistic predators, most often seeking wild prey. However, some 
wolves learn to prey on livestock and teach this behavior to other wolves. The majority of cattle 
and sheep wolf depredation incidents confirmed by USDA Wildlife Services (WS) occur on 
private lands. The likelihood of detecting injured or dead livestock is probably higher on private 
lands where there is greater human presence than on remote public land grazing allotments. 
The magnitude of under-detection of loss on public allotments is unknown. Most cattle 
depredations occur during the spring or fall months while sheep depredations occur more 
sporadically throughout the year. 
 
Wolf Depredation Reports 
Wildlife Service’s workload increased through 2009 as the wolf population increased and 
distribution expanded (Fig. 6). The number of depredation reports received since those years 
has declined from 233 in FFY 2009 to approximately 100 or less from FFY14-FFY19. That trend 
held steady during FFY 2019, when 104 reports were received (Fig. 6). Since 1997, about 50% of 
wolf depredation reports received by WS have been verified as wolf-caused. During FFY 2019, 
69% of reports were verified as wolf depredation, higher than the long-term average.  
 

 
 
Figure 6. Number of complaints received by USDA Wildlife Services as suspected wolf damage 
and number of complaints verified as wolf damage, Federal Fiscal Year 1997-2019.  
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Wolf Depredation Incidents and Responses During 2019 
Wildlife Services confirmed that, statewide, 69 cattle and 21 sheep, 2 goats, 2 mini horses, and 
3 livestock guard dogs were killed by wolves during 2019. Wildlife Services also determined 
that an additional 18 cattle and 3 sheep were probable wolf kills. Total confirmed cattle and 
sheep losses were similar to 2011-2018 numbers, however the number of cattle has increased 
whereas the number of sheep has decreased (Fig. 7). Many livestock producers reported 
“missing” livestock and suspected wolf predation. Others reported indirect losses including 
poor weight gain and reduced productivity of livestock. There is no doubt that there are 
undocumented losses.  
 
To address livestock conflicts and to reduce the potential for further depredations, 59 wolves 
were killed during 2019 (Fig. 7). This was slightly lower than the average number of wolves 
removed due to depredation since meeting biological recovery goals in 2002 (Avg. = 70/year) 
and since delisting in 2011 (Avg. = 67/year). Federal and state regulations since 2009 have 
allowed private citizens to kill wolves seen in the act of attacking, killing, or threatening to kill 
livestock; from 2009-2019 an average of 12 wolves have been taken by private citizens each 
year. Forty-three wolves were removed in control actions by USDA Wildlife Services during 
2019, and 16 wolves were killed by private citizens when wolves were seen chasing, killing, or 
threatening to kill livestock. The general decrease in livestock depredations since 2009 (Fig. 6) 
may be a result of several factors, primarily more aggressive wolf control in response to 
depredations (DeCesare et al. 2018). 
  

 
 
Figure 7. Number of cattle and sheep killed by wolves and number of wolves removed 
through agency control and legal depredation-related take by private citizens, 2000-2019.  
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Montana Livestock Loss Board Payments 
The Montana Wolf Conservation and Management Plan called for creation of this Montana-
based program to address the economic impacts of verified wolf-caused livestock losses. The 
plan identified the need for an entity independent from FWP to administer the program. The 
purposes of the MLLB are 1) to provide financial reimbursements to producers for losses caused 
by wolves based on the program criteria, and 2) to proactively apply prevention tools and 
incentives to decrease the risk of wolf-caused losses and minimize the number of livestock 
killed by wolves through proactive livestock management strategies. The Loss Mitigation 
element implements a reimbursement payment system for confirmed and probable losses that 
are verified by USDA Wildlife Services. Indirect losses and costs are not directly covered. Eligible 
livestock losses are cattle, calves, hogs, pigs, horses, mules, sheep, lambs, goats, llamas, and 
guarding animals. Confirmed and probable death losses are reimbursed at 100% of fair market 
value. Veterinary bills for injured livestock that are confirmed due to wolves may be covered up 
to 100% of fair market value of the animal when funding becomes available.  
 
Reimbursement totals for CY2019 wolf depredations were $82,450 paid to 32 livestock owners 
on 78 head of livestock and 0 dogs. These numbers differ slightly from the WS confirmed losses 
due to wolves because reimbursements are also made for probable wolf depredations and 
tallied by calendar year rather than federal fiscal year. By comparison, confirmed and probable 
losses totaled $143,467 from grizzly bears and $34,971 from mountain lions during 2019.  
 
FWP Collaring of Livestock Packs 
State Statute 87-1-623 requires Montana Fish, Wildlife and Parks to allocate wolf license dollars 
toward collaring wolf packs in livestock areas. The purpose of these efforts is to be able to more 
readily understand which wolf pack may have been involved in a livestock depredation and so 
that USDA Wildlife Services can be more efficient and effective at controlling packs that 
depredate on livestock. FWP employs six wolf specialists located in Regions 1, 2, 3, 4, and 5 
(Appendix 1) along with seasonal technicians in Regions 1 and 2.  Wolf specialists and 
technicians capture wolves and deploy collars during winter helicopter capture efforts and 
summer/fall trapping efforts. During 2019, FWP wolf specialists captured and collared 12 
wolves (Table 3). Winter conditions were fair during the period when the helicopter was 
available, and 4 wolves were captured via helicopter darting during January and February 2019. 
FWP captured and collared 8 wolves by trapping efforts during summer and fall of 2019. USDA 
Wildlife Services also captured and collared an additional 9 wolves for a total of 21 statewide by 
both agencies.   
 
 Table 3. Wolves captured and radio-collared by FWP Wolf Specialists during 2019. 

 
  
  
 
 
 
 

 Helicopter Summer/Fall Total 
Region 1 0 1 1 
Region 2 2 6 8 
Region 3 0 1 1 
Region 4 2 0 2 
Total 4 8 12 
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Proactive Prevention of Wolf Depredation 
In Northwest Montana, proactive depredation prevention work continued in the Trego area 
with the second grazing season of the Range Rider program.  The Trego Range Rider Program 
was collaboratively funded and staffed by Natural Resources Defense Council; Defenders of 
Wildlife; Vital Ground; USDA AHPIS Wildlife Services; Montana Fish, Wildlife & Parks; U.S. Forest 
Service; and six livestock producers.  The desired outcomes were to mitigate producer-predator 
conflicts, reduce cattle losses, reduce wolf and grizzly bear mortalities, find livestock carcasses 
and remove them, document presence of predators, and alert producers of predators among 
the herds.  Ranger Rider Charlie Lytle returned for a second year, covering 6 allotments in 
northwestern Montana on the Kootenai National Forest and Jim Creek state lease.  Cattle were 
present on the allotments that are within the territory of the Lydia pack in Swamp Creek 
drainage and the Good Pack, which has had depredations in previous years, but there were no 
losses in any of the allotments this year confirmed to be from wolves.  The ranchers that met 
with FWP and NRDC in December were all very complimentary of the program, and said they 
believed having a Range Rider presence in the area was important.  They also thought it was a 
large area for one person to cover and would be interested in expanding it with additional 
riders.  FWP and WS both attempted to trap and collar wolves in that area but were not 
successful and have plans to collaborate on a trapline in spring 2020.  The program is expected 
to continue in 2020.  Ted North of WS is interested in starting another Ranger Rider program in 
2020 in the Nirada and Hot Springs area west of Flathead Lake due to high livestock-carnivore 
conflicts in 2019, and is looking for funding and collaboration with the livestock producer in that 
area.  Adam Bach of Wildlife Service continued putting up fladry in 2019, completing calving 
enclosures at 6 locations (most returning from previous years).  In 2020 he is working with 
Defenders of Wildlife and NRDC to construct an experimental fence in Marion that is a 6-7 
strand alternating-current permanent fence, because they have used fladry at that location for 
7 years and want to make a more permanent fence solution. 
 
In West-Central Montana, FWP was involved in two collaborative proactive risk management 
projects in the Blackfoot Valley: the Blackfoot Challenge range rider project and carcass pickup 
program. This was the 12th year that the range rider project was implemented. The project 
employed four seasonal range riders and one permanent wildlife technician to monitor 
livestock and predators in areas occupied by the Arrastra Creek, Chamberlain, Morrell 
Mountain, Inez, and Union Peak wolf packs. The carcass pickup program removed livestock 
carcasses from Blackfoot Valley ranches and transported them to the carcass compost site to 
reduce attractants in livestock grazing and calving areas. FWP and the Blackfoot Challenge 
partnered with Wildlife Services for the third year to deploy fladry in the Blackfoot Valley to 
deter wolves from livestock calving yards. 
 
In Southwest Montana, FWP assisted with fladry deployment during calving season in Tom 
Miner Basin. FWP was also  involved in two collaborative, proactive risk management projects 
in the Big Hole Valley. The first of these projects, a range rider completed its ninth season 
in 2019. The second project was a carcass pickup and composting program that was in its fifth 
year of operation.    
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In North-Central Montana, a range rider program, initiated in 2017, on private land and USFS 
grazing allotments west of Augusta included four livestock producers and employed one full-
time and an additional part-time range rider. The program was coordinated by Kyran Kunkel, 
through the Conservation Science Collaborative, with funding from the Livestock Loss Board, 
along with several NGOs. 
 
Wildlife Services continued a full-time conflict reduction specialist position (Adam Baca) in 
Montana. This is a Wildlife Services employee. The position was funded collaboratively by 
Wildlife Services, U.S. Fish and Wildlife Service, Natural Resources Defense Council, Defenders 
of Wildlife and the American Prairie Reserve.  Baca spent all of his time planning, coordinating, 
and implementing non-lethal predator damage management tools such as turbo fladry and 
electric fencing to protect livestock from predation. This position began in February 2018. 
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3.3 Total 2019 Documented Statewide Wolf Mortalities 
 
FWP detected a total of 394 wolf mortalities during 2019 statewide due to all causes (Fig. 8). 
Undoubtedly, additional mortalities occurred but were not detected. Documented total wolf 
mortality in 2019 was 24% greater than 6-year average since 2013 (6-yr avg. = 317). The 
majority of the increase was due to higher levels of legal harvest with 298 occurring during 
calendar year 2019. Control actions were very similar to 2015-2018, and approximately one-
third of peak years. Of the 73 wolves removed in 2019 for livestock depredations, 56 were 
removed by WS and 17 were legally killed by private citizens under the Montana state laws 
known as the Defense of Property statute or Senate Bill 200. Eight wolves were documented as 
being killed illegally, and 7 wolves were documented as being killed by vehicle or train collision. 
Eight wolves were documented as being killed by natural, other, or unknown causes.    
 

 
Figure 8. Minimum number of wolf mortalities documented by cause for gray wolves (2005-

2019). Total number of documented wolf mortalities during 2019 was 375. 
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4. OUTREACH AND EDUCATION 
 
 
FWP’s wolf program outreach and education efforts are varied, but significant. Outreach 
activities take a variety of forms including field site visits, phone and email conversations to 
share information and answer questions, presentations to school groups and other agency 
personnel, media interviews, and formal and informal presentations. FWP also prepared and 
distributed a variety of printed outreach materials and media releases to help Montanans 
become more familiar with the Montana wolf population and the state plan. The “Report a 
Wolf” application continued to generate valuable information from the public in monitoring 
efforts for existing packs and documenting wolf activity in new areas. Several reports were 
received through the website and others via postal mail and over the phone. Most wolf 
program staff spent some time at hunter check stations in FWP Regions 1-5 to talk with hunters 
about wolves, wolf management, and their hunting experiences.  
 
 
 

5. FUNDING 
 
 
5.1  Montana Fish, Wildlife & Parks Funding 
 
Funding for wolf conservation and management in Montana is controlled by laws enacted by 
the state legislature. State laws also provide detailed guidance on some wolf management 
activities. The Montana Code Annotated (MCA) is the current law, and specific sections can be 
viewed at http://leg.mt.gov/bills/mca/index.html. Legislative bill language and history that has 
created or amended MCA sections can be accessed at http://leg.mt.gov/css/bills/Default.asp.  
Three sections of the MCA are of primary significance to wolf management and funding.  
These are: 
MCA 87-5-132  Use of Radio-tracking Collars for Monitoring Wolf Packs  
MCA 87-1-623  Wolf Management Account 
MCA 87-1-625  Funding for Wolf Management  
 
MCA 87-5-132 was created during the 2005 legislative session by Senate Bill 461. It has been 
amended twice, both times during the 2011 legislative session, by House Bill 363 and Senate Bill 
348. This law requires capturing and radio-collaring an individual within a wolf pack that is 
active in an area where livestock depredations are chronic or likely.   
 
MCA 87-1-623 was created during the 2011 Legislative Session by House Bill 363. This law 
requires that a wolf management account be set up and that all wolf license revenue be 
deposited into this account for wolf collaring and control. Specifically, it states that subject to 
appropriation by the legislature, money deposited in the account must be used exclusively for 
the management of wolves and must be equally divided and allocated for the following 

http://leg.mt.gov/bills/mca/index.html
http://leg.mt.gov/css/bills/Default.asp
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purposes: (a) wolf-collaring activities conducted pursuant to 87-5-132; and (b) lethal action 
conducted pursuant to 87-1-217 to take problem wolves that attack livestock. 
 
MCA 87-1-625 was created during the 2011 Legislative Session by Senate Bill 348. This law 
required FWP to allocate $900,000 annually toward wolf management. "Management" in MCA 
87-1-625 is defined as in MCA 87-5-102, which includes the entire range of activities that 
constitute a modern scientific resource program, including but not limited to research, census, 
law enforcement, habitat improvement, control, and education. The term also includes the 
periodic protection of species or populations as well as regulated taking. During the 2015 
legislative session, Senate Bill 418 reduced this amount to $500,000 of spending authority.  
 
The wolf management budget for state fiscal year 2019 (July 1, 2018 – June 30, 2019) was 
$706,239 and consisted of $216,640 of federal PR funds, $489,599 of Montana wolf and general 
license dollars, and $25,001 from the Rocky Mountain Elk Foundation.  
 
Funding was used to pay for FWP’s field presence to implement population monitoring, 
collaring, outreach, hunting, trapping, and livestock depredation response. During state fiscal 
year 2019, the wolf program had 5.5 FTE wolf specialists dedicated to wolf management, and 1 
total FTE for 2 seasonal technicians to increase collaring efforts in wolf packs associated with 
livestock. FWP also renewed the financial agreement with Wildlife Services for their role in wolf 
depredation management efforts. Other wolf management services provided by FWP include 
law enforcement, harvest/quota monitoring, legal support, public outreach, and overall 
program administration. Exact cost figures have not been quantified for the value of these 
services.  
 
 
5.2  USDA Wildlife Services Funding  
 
Wildlife Services (WS) is the federal agency that assists FWP with wolf damage management. 
WS personnel conduct investigations of injured or dead livestock to determine if it was a 
predation event and, if so, what predator species was responsible for the damage. Based on WS 
determination, livestock owners may be eligible to receive reimbursement through the 
Montana Livestock Loss Program. If WS determines that the livestock depredation was a 
confirmed wolf kill or was a probable wolf kill, the livestock owner is eligible for 100% 
reimbursement on the value of the livestock killed based on USDA market value at the time of 
the investigation. 
 
Under an MOU with FWP, the Blackfeet Nation (BN), and the Confederated Salish and Kootenai 
Tribes (CSKT), WS conducts the control actions on wolves as authorized by FWP, BN, and CSKT. 
Control actions may include radio-collaring and/or lethal removal of wolves implicated in 
livestock depredation events. FWP, BN, and CSKT also authorize WS to opportunistically radio-
collar wolf packs that do not have an operational radio-collar attached to a member of the pack 
in order to fulfill the requirements of Montana State Statute 87-1-623.   
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As a federal agency, WS receives federal appropriated funds for predator damage management 
activities but no federal funding directed specifically for wolf damage management. Prior to 
Federal Fiscal Year (FFY) 2011, the WS Program in Montana received approximately $250,000 
through the Tri-State Predator Control Earmark, some of which was used for wolf damage 
management operations. However, that earmark was completely removed from the federal 
budget for FFY 2011 and not replaced in FFY 2012-2019. 
 
In FFY 2019, WS spent $314,917 conducting wolf damage management in Montana (not 
including administrative costs). The FFY 2019 expenditure included $204,917 Federal 
appropriations and $110,000 from FWP.    
 
 

6. PERSONNEL AND ACKNOWLEDGEMENTS 
 
The 2019 FWP wolf specialist team was comprised of Diane Boyd, Nathan Lance, Abigail Nelson, 
Tyler Parks, Mike Ross, and Ty Smucker.  
 
Dr. Diane Boyd retired after more than 40 years of working with wildlife, predominantly wolves, 
including radio-tracking some of the first wolves to have recolonized Montana. Abby Nelson left 
FWP at the end of 2019 after serving as the Paradise Valley’s wolf specialist for over a decade 
where her knowledge, dedication and professionalism were respected by all. FWP is fortunate 
to have had both Abby and Diane as colleagues and we wish them both the best.  
 
Wolf specialists work closely with regional wildlife managers in FWP regions 1-5, including Neil 
Anderson, Howard Burt, Cory Loeker, Kevin Rose, and Mike Thompson, as well as Carnivore and 
Furbearer Coordinator, Bob Inman. FWP Helena and Wildlife Health Lab staff contributed time 
and expertise including Caryn Dearing, John Vore, Missy Erving, Justin Gude, Quentin Kujala, 
Greg Lemon, Ken McDonald, Adam Messer, Kevin Podruzny, Jennifer Ramsey, and Smith Wells. 
The wolf team is part of a much bigger team of agency professionals that make up Montana 
Fish, Wildlife & Parks including regional supervisors, biologists, game wardens, information 
officers, front desk staff, and many others who contribute their time and expertise to wolf 
management and administration of the program.   
 
FWP thanks Blackfoot Challenge range riders: Eric Graham, Jordan Mannix, Lindsey Mulcare, 
Vicki Pocha, and Sigrid Olson. The Blackfoot Challenge also worked with ranchers and 
landowners to reduce wildlife conflict in the Blackfoot Watershed using fladry and carcass pick-
up, and they helped with wolf monitoring.  
 
USDA APHIS WS investigates all suspected wolf depredations on livestock and under the 
authority of FWP, carries out all livestock depredation-related wolf damage management 
activities in Montana. We thank them for contributing their expertise to the state’s wolf 
program and for their willingness to complete investigations and carry out lethal and non-lethal 
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damage management and radio-collaring activities in a timely fashion. We also thank WS for 
assisting with monitoring wolves in Montana. WS personnel involved in wolf management in 
Montana during 2019 included state director John Steuber; western district supervisor Kraig 
Glazier; eastern district supervisor Dalin Tidwell; western assistant district supervisor Chad 
Hoover; eastern assistant district supervisor Alan Brown; wildlife disease biologist Jerry 
Wiscomb; wildlife biologist Zack May; helicopter pilot Eric Waldorf; helicopter/airplane pilots 
Tim Graff and John Martin; airplane pilots Guy Terrill, Justin Ferguson, and Scott Snider; wildlife 
specialists Adam Baca, Glenn Hall, Finny Helske, Mike Hoggan, Cody Knoop, Jordan Linnell, 
Charlie Lytle, John Maetzold, Graeme McDougal, John Miedtke, Kurt Miedtke, Brian Noftsker, 
Ted North, Scott Olson, Jim Rost, Bart Smith, Pat Sinclair, and Danny Thomason. 
 
We acknowledge the work of the citizen-based Montana Livestock Loss Board which oversees 
implementation of Montana’s reimbursement program and the conflict prevention grant 
money, and we thank the LLB’s coordinator, George Edwards. 
 
We thank Northwest Connections for their avid interest and help in documenting wolf presence 
and outreach in the Swan River Valley. We thank Swan Ecosystem Center for their continued 
interest and support. We thank Kyran Kunkel of Conservation Science Collaborative, Inc. for his 
continued coordination of a range rider program on private and public land along the Southern 
Rocky Mountain Front. We also thank Kathy Robinson who was the range rider on this effort 
and was instrumental in working with local producers to monitor livestock and predator activity 
in the area.  
 
We thank Confederated Salish and Kootenai Tribal biologists Stacey Courville and Shannon 
Clairmont, and Blackfeet Tribal biologist Dustin Weatherwax for capturing and monitoring 
wolves in and around their respective tribal reservations. 
 
The Montana Wolf Management program field operations also benefited in a multitude of ways 
from the continued cooperation and collaboration of other state and federal agencies and 
private interests such as the USDA Forest Service, Montana Department of Natural Resources 
and Conservation (“State Lands”), U.S. Bureau of Land Management, Weyerhauser Company, 
Stimpson Lumber Company, Glacier National Park, Yellowstone National Park, Idaho Fish and 
Game, Wyoming Game and Fish, Nez Perce Tribe, Canadian Provincial wildlife professionals, 
Turner Endangered Species Fund, People and Carnivores, Wildlife Conservation Society, 
Keystone Conservation, Boulder Watershed Group, Big Hole Watershed Working Group, the 
Madison Valley Ranchlands Group, the upper Yellowstone Watershed Group, the Blackfoot 
Challenge, Tom Miner Basin Association, and the Granite County Headwaters Working Group. 
 
We deeply appreciate and thank our pilots whose unique and specialized skills, help us find 
wolves, get counts, and keep us safe in highly challenging, low altitude mountain flying 
situations. They include Joe Rahn (FWP Chief Pilot), Neil Cadwell (FWP Pilot), Ken Justus (FWP 
Pilot), Trever Throop (FWP Pilot), Mike Campbell (FWP Pilot), Rob Cherot (FWP Pilot), Jim Pierce 
(Red Eagle Aviation, Kalispell), Roger Stradley (Gallatin Flying Service, Belgrade), Steve Ard 
(Tracker Aviation Inc., Belgrade), Lowell Hanson (Piedmont Air Services, Helena), Dave Horner 
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(Red Eagle Aviation), Joe Rimensberger (Osprey Aviation, Hamilton), and Mark Duffy (Central 
Helicopters, Bozeman). We also thank Quicksilver Aviation for their safe and efficient helicopter 
capture efforts. 
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TO REPORT A DEAD WOLF OR POSSIBLE ILLEGAL ACTIVITY: 
 
Montana Fish, Wildlife & Parks 

• Dial 1-800-TIP-MONT (1-800-847-6668) or local game warden 
 

  
TO SUBMIT WOLF REPORTS ELECTRONICALLY AND TO LEARN MORE ABOUT THE 
MONTANA WOLF PROGRAM, SEE:   

• http://fwp.mt.gov/fishAndWildlife/management/wolf/  
 

 
APPENDIX 1 

 
MONTANA CONTACT INFORMATION 

 
Montana Fish, Wildlife & Parks  
 
Wendy Cole 
FWP Wolf Management Specialist, Kalispell 
406-751-4586 
wendy.cole@mt.gov 
 
Tyler Parks 
FWP Wolf Management Specialist, Missoula 
406-531-4454 
tylerparks@mt.gov 
 
Nathan Lance 
FWP Wolf Management Specialist, Butte 
406-425-3355 
nlance@mt.gov 
 
Mike Ross  
FWP Wolf Management Specialist, Bozeman 
406-581-3664 
mross@mt.gov 
 
Ty Smucker 
FWP Wolf Management Specialist, Great Falls 
406-750-4279 
tsmucker@mt.gov 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Bob Inman 
FWP Carnivore & Furbearer Coordinator 
406-444-0042 
bobinman@mt.gov 
 
Brian Wakeling 
FWP Wildlife Management Bureau Chief 
406-444-3940 
brian.wakeling@mt.gov 
 
USDA Wildlife Services  
(to request investigations of injured or dead 
livestock):         
     
John Steuber 
USDA WS State Director, Billings 
(406) 657-6464 (w) 
 
Kraig Glazier 
USDA WS West District Supervisor, Helena 
(406) 458-0106 (w) 
 
Dalen Tidwell 
USDA WS East District Supervisor, Columbus 
(406) 657-6464 (w) 
 

http://fwp.mt.gov/fishAndWildlife/management/wolf/
mailto:tylerparks@mt.gov
mailto:nlance@mt.gov
mailto:mross@mt.gov
mailto:tsmucker@mt.gov
mailto:bobinman@mt.gov
mailto:jvore@mt.gov
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MONTANA FISH WILDLIFE & PARKS  
ADMINISTRATIVE REGIONS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
STATE  REGION 3 REGION 4 REGION 6 
HEADQUARTERS 1400 South 19th 4600 Giant Springs Rd 54078 US Hwy 2 W 
MT Fish, Wildlife & Parks Bozeman, MT 59718 Great Falls, MT 59405 Glasgow, MT 59230 
1420 E 6th Avenue (406) 994-4042 (406) 454-5840 (406) 228-3700 
PO Box 200701    
Helena, MT 59620-0701 HELENA Area Res Office LEWISTOWN Area Res HAVRE Area Res Office 
(406) 444-2535  (HARO)  Office (LARO)  (HvARO) 
 930 Custer Ave W 215 W Aztec Dr 2165 Hwy 2 East 
REGION 1 Helena, MT 59620 PO Box 938 Havre, MT 59501 
490 N Meridian Rd (406) 495-3260 Lewistown, MT 59457 (406) 265-6177 
Kalispell, MT 59901  (406) 538-4658  
(406) 752-5501 BUTTE Area Res Office  REGION 7 
  (BARO) REGION 5 Industrial Site West 
REGION 2 1820 Meadowlark Ln 2300 Lake Elmo Dr PO Box 1630 
3201 Spurgin Rd Butte, MT 59701 Billings, MT 59105 Miles City, MT 59301 
Missoula, MT 59804 (406) 494-1953 (406) 247-2940 (406)234-0900 
(406) 542-5500    

  



25 

 
APPENDIX 2 

 
RESEARCH, FIELD STUDIES, AND PROJECT PUBLICATIONS 

 
Each year in Montana, there are a variety of wolf-related research projects and field studies in 
varying degrees of development, implementation, or completion. These efforts range from wolf 
ecology and predator-prey relationships to wolf-livestock relationships, policy, or wolf 
management. In addition, the findings of some completed projects get published in the peer-
reviewed literature. The 2019 efforts are summarized below, with updates or project abstracts. 
 
 
A2.1. IMPROVING ESTIMATION OF WOLF RECRUITMENT AND ABUNDANCE, AND 
DEVELOPMENT OF AN ADAPTIVE HARVEST PROGRAM FOR WOLVES IN MONTANA.  
 
Status: In Progress 
 
The full 2019 report is included on the following pages. 
 



Federal Aid in Wildlife Restoration Grant W-161-R-1  
Annual interim report, March 2020 
 

Improving Estimation of Wolf Recruitment 
and Abundance, and Development of an 
Adaptive Harvest Management Program for 
Wolves in Montana  

 
Sarah Sells  
Research Associate 
Montana Cooperative Wildlife Research Unit 
205 Natural Sciences, Missoula, MT 59812 
 
Allison Keever 
PhD Candidate 
Montana Cooperative Wildlife Research Unit 
205 Natural Sciences, Missoula, MT 59812 
 
Mike Mitchell 
Unit Leader 
Montana Cooperative Wildlife Research Unit 
205 Natural Sciences, Missoula, MT 59812 
 

 
Justin Gude 
Res & Tech Services Bureau Chief 
Montana Fish, Wildlife and Parks 
1420 E. 6th St., Helena, MT 59620 
 
Kevin Podruzny 
Biometrician 
Montana Fish, Wildlife and Parks 
1420 E. 6th St., Helena, MT 59620 

 

State: Montana  
Agency: Fish, Wildlife & Parks  
Grant: Montana wolf monitoring study 
Grant number: W-161-R-1 
Time period: January 1, 2019−December 31, 2019 

S. Sells 



INTRODUCTION 

Wolves (Canis lupus) were reintroduced into 2 areas in the southern portion of the northern Rocky 
Mountains (NRM) in 1995, and after rapid population growth were delisted from the endangered species 
list in 2011. Since that time, states in the NRM have agreed to maintain populations and breeding pairs (a 
male and female wolf with 2 surviving pups by December 31; USFWS 1994) above established 
minimums (≥150 wolves and ≥15 breeding pairs within each state). Montana estimates population size 
every year using patch occupancy models (POM; Miller et al. 2013; Rich et al. 2013; Bradley et al. 2015), 
however, these estimates are sensitive to pack size and territory size, and were developed pre-harvest. 
Reliability of future estimates based on POM will be contingent on accurate information on territory size, 
overlap, and pack size, which are expected to be strongly affected by harvest. Additionally, breeding 
pairs, which has proven to be an ineffective measure of recruitment, are determined via direct counts. 
Federal funding for wolf monitoring has ended in states where wolves are delisted, and future monitoring 
will not be able to rely on intensive counts of the wolf population. Furthermore, intensive, field-based 
monitoring has become cumbersome and less effective since the population has grown. With the 
implementation of harvest, predicting the effects of harvest on the wolf population and continuing to 
monitor the effectiveness of management actions is required to make informed decisions regarding 
hunting and trapping seasons.  

Objectives & Deliverables  

Two PhD students are addressing the 4 study objectives, as follows (Fig. 1). 

Objective 1. Improve and maintain calibration of wolf abundance estimates generated through POM. 

Deliverables: Models to estimate territory size and pack size that can keep POM estimates calibrated 
to changing environmental and management conditions for wolves in Montana (Project 1, S. Sells). 

Objective 2. Improve estimation of recruitment. 

Deliverables: A method to estimate recruitment for Montana’s wolf population that is more cost 
effective and biologically sound than the breeding pair metric (Project 2, A. Keever).  

Objective 3. Develop a framework for dynamic, adaptive harvest management based on achievement of 
objectives 1 & 2. 

Deliverables: An adaptive harvest 
management model that allows the 
formal assessment of various harvest 
regimes and reduces uncertainty over 
time to facilitate adaptive management 
of wolves (Project 2, A. Keever). 

Objective 4. Design a targeted monitoring 
program to provide information needed for 

Figure 1. Objectives for this project are being addressed under 2 
PhD projects.  



robust estimates and reduce uncertainty in the AHM paradigm over time. 

Deliverables: A recommended monitoring program for wolves to maintain calibration of POM 
estimates, determine effectiveness of management actions, and facilitate learning in an adaptive 
framework (Projects 1 & 2). 

Location 

This study encompasses wolf distribution in Montana. Additional data for Deliverable 2 were contributed 
from data collected for wolves in central Idaho (Game Management Units 4, 28, 33, 34, and 35) by Idaho 
Department of Fish and Game as part of other research initiatives (Ausband et al. 2015, 2017; Ausband 
2018).   

Project Status 

Project 1—S. Sells: The PhD components of this project were completed and defended in December 
2019 (Fig. 2). Project deliverables included a mechanistic territory model, empirical territory and group 
size models, and a final dissertation (Sells 2019). As a Research Associate, S. Sells is continuing 
collaboration towards Deliverables 3 & 4 and is implementing the territory and group models within the 
existing POM framework.  

Project 2—A. Keever: This 
project will be completed and 
defended in March 2020. 
Project deliverables will 
include an empirical 
recruitment model, a 
mechanistic recruitment 
model, a decision tool in an 
AHM framework, and a final 
dissertation. 

Details are provided in subsequent sections of this report.  
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OBJECTIVE 1: IMPROVE AND MAINTAIN CALIBRATION OF WOLF ABUNDANCE 
ESTIMATES GENERATED THROUGH POM—Sarah Sells, Project 1 

ABSTRACT  Our goal under Objective 1 was to develop reliable methods to estimate territory size, 
territory overlap, and pack size to help improve the reliability of wolf abundance estimates through POM. 
We developed and applied a mechanistic territory model to produce predictions for the hypothesis that 
wolves select territories economically based on the benefits of food resources and costs of competition, 
travel, and predation risk. We summarized territory sizes of real wolves using location data to test the 
model’s predictions. As predicted, territory sizes in Montana varied inversely with prey abundance, 
number of nearby competitors, and pack size, and parabolically with predator density. Parameterizing the 
model with limited data for prey, terrain ruggedness, and human density produced spatially-explicit 
predictions for territory location, size, and overlap for the Montana wolf population and reliably predicted 
territories of specific packs, without using any empirical data for wolves. We also developed an empirical 
model that produced reliable estimates of territory size, which can be used to further predict and 
understand territorial behavior. Additionally, we aimed to test mechanisms hypothesized to influence 
social decisions (e.g., dispersal timing) and to develop a predictive model for pack size. Wolf pack sizes 
in Montana were positively related to the local abundance of prey and density of packs, and negatively 
related to terrain ruggedness, local mortalities, and intensity of harvest management. A predictive model 
for pack sizes reliably estimated the annual wolf pack sizes observed and illuminated possible underlying 
mechanisms influencing variation in pack sizes over space and time.  

1.1 Introduction 

Monitoring is a critical yet challenging management tool for gray wolves. Monitoring results help MFWP 
set management objectives and communicate with stakeholders and the public. Monitoring any large 
carnivore is challenging due to their elusive nature and low densities (Boitani et al. 2012). This is 
particularly true for wolves in the Northern Rocky Mountains, as federal funding for monitoring has 
ended and a large population spreads monitoring efforts thin. Furthermore, there is frequent turnover of 
packs, and behavioral 
dynamics may have 
changed with harvest. 

Abundance estimates are 
a key component of 
monitoring (Bradley et 
al. 2015). Abundance is 
currently estimated in 
Montana using 3 
parameters: area 
occupied, average 
territory size, and annual 
average pack size (Fig. 
1.1, Bradley et al. 2015, 
Sells 2019). Area 
occupied is estimated 

 
Figure 1.1. Example of POM results (red indicates highest occupancy probability, green 
lowest), and methods for calculating abundance. Graphed abundance estimates are based on 
minimum counts (black bars) and POM-based estimates (white bars). (From Sells 2019.) 

 



with a Patch Occupancy Model (POM) based on hunter observations and field surveys (Miller et al. 2013, 
Rich et al. 2013, Bradley et al. 2015). Average territory size is assumed to be 600 km2 with minimal 
overlap, based on past work (Rich et al. 2012). Annual average pack size is estimated from monitoring 
results. Abundance is then calculated as the number of territories estimated within the area occupied, 
multiplied by the average pack size.  

Whereas estimates of area occupied from POM are expected to be reliable (Miller et al. 2013, Bradley et 
al. 2015), reliability of abundance estimates hinge on assumptions about territory size and overlap 
(Bradley et al. 2015). Assumptions of a fixed territory size with minimal overlap are simplistic; in reality, 
territories vary spatiotemporally (Uboni et al. 2015). This variability is likely even greater under harvest 
(Brainerd et al. 2008). Furthermore, estimates of mean territory size were largely derived pre-harvest 
(Rich et al. 2012). If average territory size has changed, abundance estimates would be biased. Similarly, 
at finer spatial scales (e.g., at regional levels), where territory sizes are smaller than average, abundance 
estimates would be biased low, whereas the opposite would be true where territories are larger than 
average. Variations in territory overlap would similarly bias results. 

Estimates of abundance also hinge on assumptions about pack size (Bradley et al. 2015). Pack size 
estimates require packs to be located and accurately counted each year, which is no longer possible due to 
the large number of packs and declining funding for monitoring (Bradley et al. 2015). Since 
implementation of recreational public harvest in 2009, several factors have further compounded these 
challenges and decreased accuracy of pack size estimates. First, whereas larger packs are generally easier 
to find and monitor, average pack size has decreased since harvest began (Bradley et al. 2015). Difficult-
to-detect smaller packs may be more likely to be missed altogether, biasing estimates of average pack size 
high. Conversely, incomplete pack counts, especially for larger packs, could bias estimates of average 
pack size low. Harvest and depredation removals also affect social and dispersal behavior (Adams et al. 
2008, Brainerd et al. 2008, Ausband 2015) and therefore further influence pack size.  

Development of reliable methods to estimate territory size, territory overlap, and pack size could improve 
accuracy and precision of abundance estimates. In addition to pack counts, monitoring has relied on 
deploying collars; this is increasingly challenging and costly due to difficulty of capture and frequent 
collar loss caused by collar failures and mortalities. Given these challenges, the fact that federal funding 
for wolf monitoring has ended, and the number of packs to be monitored, there is need for new methods 
that reduce monitoring requirements and enable estimating territory size, territory overlap, and pack size. 
Furthermore, these methods should help keep estimates from POM calibrated into the future, which could 
be achieved by developing methods to predict behavioral changes under a wide range of potential future 
conditions.  

We sought to develop reliable methods to calibrate POM by estimating territory size, territory overlap, 
and pack size absent costly and challenging monitoring efforts. Accordingly, our approach employed 
mechanistic and empirical models to maximize understanding of behavior. A mechanistic approach 
provided a means to test hypotheses to understand why wolves select particular territories. It furthermore 
enabled predicting behavior across a full range of potential present and future conditions. We also 
developed empirical models to understand patterns in territories and pack sizes of wolves in Montana and 
to provide additional tools to estimate territory and pack size.  



Below, we provide overviews of each of the models developed. The dissertation produced from this 
research contains the full details about the mechanistic territory model (Chapters 1 and 3, Sells 2019), 
empirical territory size model (Chapter 2, Sells 2019), and empirical pack size model (Chapter 4, Sells 
2019). Manuscripts for publication in scientific journals are currently in preparation or review. The text 
that follows was modified or borrowed from Sells (2019).  

1.2 Wolf Location Data 

A major component of this project was to collar wolves to collect location data. This effort contributed to 
both the mechanistic (Sect. 1.3) and empirical territory models (Sect. 1.4). Results from location data 
provided both a means to assess the mechanistic model’s performance and the data required to fit 
empirical models of territory size.  

Study Area 

Our study area comprised Montana (Fig. 1.2), which included the northern extent of the U.S. Rocky 
Mountains and elevations ranging from 554 – 3,938 m (Foresman 2001). In the northwest corner of 
Montana, dense forests and a maritime-influenced climate characterized the rugged, mountainous terrain 
of the Northern Rockies ecoregion (epa.gov). To the east, the Canadian Rockies ecoregion was 
characterized by higher-elevation, glaciated terrain, which transitioned to the Northwestern Glaciated 
Plains ecoregion characterized by level and rolling terrain with seasonal ponds and wetlands. In far 
southwestern Montana, the Idaho Batholith ecoregion was mountainous, granitic, and partially glaciated. 
To the east, the large Middle Rockies ecoregion was characterized by rolling foothills where shrubs and 
grasses transitioned to rugged mountains with conifers and alpine vegetation. The xeric Wyoming Basin 
ecoregion of south-central Montana was dominated by grasses and shrubs. The semiarid, rolling plains of 

 
Figure 1.2. Our study area encompassed the state, which is characterized by various ecoregions (epa.gov).  
 



Northwestern Great Plains ecoregion in southeastern Montana was interspersed with breaks and forested 
highlands. Wolves were found primarily in the western side of the state, but reported sightings and 
occasional harvests occurred in eastern Montana. Primary prey for wolves were elk (Cervus canadensis), 
white-tailed deer (Odocoileus virginianus), mule deer (O. hemionus), and moose (Alces alces). Other 
large carnivores included coyotes (C. latrans), mountain lions (Puma concolor), black bears (Ursus 
americanus), and grizzly bears (U. arctos). The human population in Montana was just over 1,062,000 in 
2018 (census.gov). Annual depredation removals for livestock conflicts ranged 51 – 61 from 2014 – 2017 
(Coltrane et al. 2015; Bradley et al. 2015; Boyd et al. 2017; Montana Fish Wildlife and Parks 2018). 
During this same era, harvest through hunting and trapping led to 207 – 295 mortalities per harvest 
season, which occurred each September 1 – March 15.  

Methods 

Location data were collected from 2014 – 
2019 via GPS collars deployed by MFWP. 
Wolf captures occurred using foothold traps 
(EZ Grip # 7 double long spring traps, 
Livestock Protection Company, Alpine TX), 
or aerial darting. Wolf anesthetization and 
handling followed MFWP’s biomedical 
protocol for free-ranging wolves (Montana 
Fish, Wildlife and Parks 2005), guidelines 
from the Institutional Animal Care and Use 
Committee for the University of Montana 
(AUP # 070–17), and guidelines from the 
American Society of Mammalogists (Sikes 
et al. 2011). GPS collars were Lotek 
LifeCycle, Lotek Litetrack B 420, Telonics 
TGW-4400-3, Telonics TGW-4483-3, or 
Telonics TGW-4577-4, programmed to 
collect latitude and longitude every 3 – 13 
hours.  

MFWP wolf specialists assigned a 
preliminary pack identification to each 
collared wolf. This identification was fixed while the wolf remained a resident, i.e., its movements were 
in a localized cluster, including limited forays, defined as departing from and returning to the cluster. We 
considered the wolf to remain a resident if it did not start a new foray < 1 month after returning. If forays 
became more frequent or the wolf did not return, we considered it to be dispersing thereafter. Frequent 
forays nearly always precipitated dispersal. Upon dispersing, a wolf could either die or join a new pack by 
again localizing its movements. Successful dispersers were identified as a resident of the nearest pack, or 
given a new pack identification if the cluster did not overlap a known pack. 

We estimated sizes, locations, and centroids of territories of resident, GPS-collared wolves (Figs. 1.3 – 
1.4) using Program R (R Core Team 2018). We estimated 95% volume-adaptive kernel density estimates 

 
Figure 1.3 Locations of 28 annual territories estimated for collared 
wolves. Darker shading represented territory overlap, and numbers 
were the average pack size in the 2 years post-capture. Large 
waterbodies and shaded relief are also shown. 
 



(KDEs; Worton 1989) with package 
AdehabitatHR (Calenge 2006), with a smoothing 
parameter of 100% of the reference bandwidth. 
This smoothing parameter and a 95% KDE best 
prevented islands and lacunas while excluding 
extra-territorial forays. We also generated 90% 
KDEs to enable comparisons to past research in 
Montana (Rich et al. 2012). We generated KDEs 
for each year of data for each territory in which 
the wolf was a resident. We averaged territory 
size for packs with multiple KDEs, which occurred if > 1 wolf was collared in a pack or a wolf was 
collared for multiple years. We considered wolves to represent the same pack when their 50% KDEs (i.e., 
core areas) had any overlap. 

For the mechanistic territory model (Sect. 1.3), we identified a territory boundary for each pack as the 
most recent KDE generated from fixes spanning ≥ 90% of a year. In packs with fixes spanning only 70 – 
90% of a year, we used the most recent KDE. We also summarized approximate mean territory sizes for 
wolves with fixes spanning < 70% of a year (≥ 100 fixes required).  

Results 

From January 2014 – May 2019, MFWP captured and collared 92 wolves from 54 packs. Average collar 
deployment was 9.91 months, primarily as a result of collar failures (n = 33), harvest (n = 19), control 
removal (n = 8), and other mortalities (e.g., by vehicle strikes, injuries, or poaching; n = 12). Of 15 
identified dispersals, 9 led to joining or forming other territories. Remaining dispersals yielded 3 
mortalities, 2 emigrations to Idaho, and 1 emigration to Wyoming before returning to the wolf’s natal 
territory. 

From data for wolves that remained a resident of a pack for ≥ 70% of a year, we estimated 43 territories 
of 28 packs (Fig. 1.3). After averaging by pack, arithmetic mean territory size was 582.02 km2 for 95% 
KDEs and 440.89 km2 for 90% KDEs (Fig. 1.4; Table 1.1). Accordingly, mean territory size decreased by 
26.49% from that estimated by prior work (Rich et al. 2012). 

1.3 Mechanistic Territory Model 

The goal of developing a mechanistic territory model was to better understand how and why wolf 
territories vary over space and time. This variation could arise based on the conditions wolves encounter 
when selecting and defending 
territories, such as those related to 
food resources, competition, and 
humans. Understanding how and 
why territory sizes vary would help 
calibrate POM.  

Figure 1.4. Annual territory size estimated for packs in Montana 
from GPS-collared wolves, 2014 – 2019.  

 

Table 1.1. Mean sizes for wolf territories in Montana, 2014 – 2019. 
Measurement N 

packs 
�̅�𝑥 
territory 
size 
(km2) 1 

SE 
(km2) 

Min. Max. Geometric 
�̅�𝑥 (km2) 

95% KDEs 28  582.02 79.41 187.71 2207.42 483.62 

90% KDEs 28  440.89 58.75 137.82 1592.00 366.50 

1. Arithmetic �̅�𝑥 & SE.  
 



In general, territories that maximize benefits and minimize costs of ownership should lead to higher 
fitness (Brown 1964, Emlen and Oring 1977, Krebs and Kacelnik 1991). Accordingly, as a product of 
natural selection (Darwin 1859), animals are likely adapted to select territories economically. Based on 
theory and empirical precedent, territoriality should occur only when resources are economically 
defendable (Brown 1964), i.e., benefits outweigh costs of defense. Economical territories should also be 
only large enough to provide requisite resources for survival and reproduction, except in cases where 
additional resources increase fitness (Mitchell and Powell 2004, 2007, 2012). A primary benefit of many 
territories is likely exclusive access to food resources (Brown 1964, Hixon 1980, Carpenter 1987, Adams 
2001) because food is essential to survival and reproduction. Primary costs are likely competition (Brown 
1964, Hixon 1980, Carpenter 1987) and travel (Mitchell & Powell 2004, 2007, 2012), because 
competition is inherent to territoriality and energy is needed to access and defend resources. Mortality risk 
may also be a primary cost where predator density is high if it affects how animals select and use their 
territory (Sargeant et al. 1987, Whittington et al. 2005, Rich et al. 2012). Furthermore, territory holders 
with lower competitive ability may pay higher costs to compete against more-competitive conspecifics 
(Packer et al. 1990, Sillero-Zubiri and Macdonald 1998, Cassidy et al. 2015, Sells 2019).  

We hypothesized that wolves are likewise adapted to select territories economically to meet resource 
requirements, based on the benefits of food resources and costs of competition, travel, and mortality risk. 
The primary food resources for wolves are ungulates (Mech and Peterson 2003, Peterson and Ciucci 
2003), which have been thought to affect wolf territory size and abundance (Fuller et al. 2003; 
Jedrzejewski et al. 2007). The strongly territorial nature of wolves should make competition a primary 
cost of territorial behavior. We hypothesized that smaller packs had lower competitive ability (Cassidy et 
al. 2015). As coursing predators (Peterson and Ciucci 2003, Sillero-Zubiri et al. 2004), travel costs in the 
form of distance and terrain ruggedness are also likely to affect behavior. Humans have hunted and killed 
wolves for centuries (Fritts et al. 2003, Musiani and Paquet 2004), and wolves appear to associate humans 
with risk (Whittington et al. 2004, Hebblewhite and Merrill 2008, Latham et al. 2011). Accordingly, we 
hypothesized that human density affects the cost of mortality risk for wolves. We alternatively 
hypothesized that the cost of mortality risk was relatively unimportant to how wolves select territories. 

Methods 

The mechanistic territory model was developed in NetLogo 6.0 (Wilensky 1999) and entailed spatially-
explicit simulations. Landscapes for simulations were grids of patches that varied in benefits and costs of 
ownership. We designed the model to represent the hypothesis that wolves are adapted to select territories 
economically based on the benefits of food resources discounted by the costs of competition, travel, and 
mortality risk. This meant that simulated packs employed a simple behavior rule to maintain economical 
territories by selecting territory patches that maximized benefits and minimized costs of ownership. Packs 
continued defending and modifying their territories in response to decisions made by neighboring packs 
as simulated wolf populations gradually increased to carrying capacity in the model.  

Model application 

We applied the model in two phases. In Phase 1, we produced and assessed qualitative predictions from 
the model for how territory size may vary in response to food, competition, pack size, and human density. 



We considered the model’s predictions to match reality if the predicted trends in territory sizes in relation 
to food, competition, pack size, and human density reflected trends observed empirically. 

In Phase 2, we parameterized the model with empirical data to produce quantitative, spatially-explicit 
predictions for wolves in Montana (full details in Sells 2019, Chapter 3). We used only readily-available 
data for prey, terrain ruggedness, and human density to test the model’s ability to make predictions absent 
expensive, difficult-to-collect datasets, including data for wolves (i.e., omitting data for wolf movements, 
pack locations, pack sizes, etc.). An ability to predict wolf space use absent wolf data would constitute a 
strong test of the model. We considered the model to successfully predict first-order selection (i.e., 
distribution; Johnson 1980) if the distributions of predicted and observed territories overlapped by > 50%, 
and if predicted territories overlapped < 25% of Montana not known to be part of the real distribution of 
wolves. We also compared patterns in predicted versus observed territory sizes across food abundances, 
competitor densities, human densities, and ecoregions. We then assessed the model’s ability to predict 
second-order territory selection (i.e., the sizes and locations of territories; Johnson 1980). After averaging 
predicted territory size by pack, we estimated a linear regression of the observed (Sect. 1.2) versus 
predicted territory sizes. We considered the model to reliably estimate territory size if the slope estimate’s 
95% confidence interval overlapped 1.0 (Rich et al. 2012; Sells 2019). We compared predictions of 
specific locations (i.e., each 1-km2 grid patch predicted to be owned by a pack) by assessing the true 
positive rate (% of an empirically-observed territory [Sect. 1.2] correctly predicted). We considered the 
model to successfully predict second-order selection if it reliably estimated territory size and identified > 
50% of the 1-km2 grid cells used by real packs. 

Data inputs and outputs  

Phase 1 of model simulations were conducted absent input data. We generated simple, general landscapes 
that varied in prey abundance and human densities (details in Sells 2019, Chapter 1). Pack sizes were 
randomly assigned to simulated packs. Outputs measured included territory sizes in relation to prey 
abundance, pack density, pack size, and human density. 

For Phase 2, we developed a landscape representing Montana as a grid of 1-km2 patches. We assigned 
each patch a benefit of food resources and costs of travel and mortality risk (cost of competition arose 
during simulations). This accordingly required data inputs of food resources, terrain ruggedness, and 
human density, as follows. 

To represent the benefit of food resources, we estimated densities of ungulates (fwp.mt.gov) in predicted 
seasonal habitat (Montana Natural Heritage Program). In each km2 grid cell i delineated as summer deer 
habitat, the density index was: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑)𝑖𝑖 = (𝑁𝑁𝑅𝑅 ÷ 𝛴𝛴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) × (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 ÷ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅�). 
𝑁𝑁𝑅𝑅 was the 10-year average estimate of white-tailed and mule deer abundance (fwp.mt.gov) in the MFWP 
administrative region (𝑅𝑅) where i fell. 𝛴𝛴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 was 𝑅𝑅’s estimated area of deer summer habitat. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 was 
the mean catch per unit effort (CPUE; buck harvest / hunter days) in the MFWP hunting district in which 
i fell, and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅�  was the regional mean CPUE, based on harvest records from 2008 – 2017 
(fwp.mt.gov). We repeated these calculations for a deer winter density index, and for elk summer and 
winter density indices. Although CPUE positively correlates with deer and elk abundance (Dusek et al. 
2006, Rich et al. 2012), regional CPUE was expected to be more comparable than statewide CPUE given 



differences in factors that affect hunting success (e.g., hunting regulations, terrain, vegetation, 
accessibility, etc.). Relating CPUE to the regional mean modified the density estimate based on relative 
CPUE in the same region. We calculated a moose density index for each cell i delineated as seasonal 
moose habitat as: 

𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 (𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑚𝑚𝑑𝑑)𝑖𝑖 = 𝑁𝑁𝐻𝐻𝐻𝐻 ÷ 𝛴𝛴𝐻𝐻𝐻𝐻 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 
𝑁𝑁𝐻𝐻𝐻𝐻 was the survey- and expert opinion-based estimate of moose abundance in the HD in which i fell, 
and 𝛴𝛴𝐻𝐻𝐻𝐻 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 was the area of summer or winter moose habitat in that HD. Where densities estimates were 
unavailable in parks and reservations, we interpolated ungulate indices through inverse distance 
weighting using the gstat package in R (Pebesma 2004), and smoothed each index using weighted moving 
windows. We then calculated overall ungulate density indices by summing the indices for deer, elk, and 
moose for each season. These ungulate indices thus represented the benefit of food for wolves. 

Travel cost to each patch incorporated distance and a terrain ruggedness index. Using elevation data 
obtained through package elevatr (Hollister and Shah 2017), we modeled terrain ruggedness per km2 as 
the Vector Ruggedness Measure (Sappington et al. 2007) with R package spatialEco (Evans 2018). 
Ruggedness was the average change in elevation between adjacent 1-km2 patches.  

The cost of mortality risk for each patch was based on human density. We hypothesized that the cost of 
mortality risk would rise nonlinearly with the density of humans. Accordingly, from 2010 census data we 
calculated the square root of human density per km2.  

Model outputs from Phase 2 included territory size and overlap in relation to ecoregion of Montana (Fig. 
1.2), prey abundances, pack densities, and human densities. We also gathered output data on where 
predicted territories were in relation to territories of real wolves in Montana.   

Data for testing predictions from model outputs 

We measured the conditions within empirically-observed territory boundaries (Sect. 1.2) to provide a 
means to compare the model’s predictions with observations. We estimated the average prey densities, the 
number of neighboring packs (packs with centroids ≤ 25 km from the KDE boundary), and the average 
human densities. We also summarized the pack’s mean size in the year T and T + 1 of collar deployment. 

We estimated the distribution of real wolves in Montana since recovery began (1989 – 2019) based on 
territory centroids reported annually by MFWP. We buffered the centroids by 12.41 km to produce 
circular territories 483.62 km2 in size (the geometric mean territory size for packs in Montana; Sells 
2019). Dissolving the territories into a single polygon estimated the distribution of real wolves.  

Results 

For Phase 1, the model’s qualitative predictions aligned with trends observed empirically. Territory size 
was predicted by the model and observed empirically to have negative relationships with food abundance, 
competition, pack size, and human density (Figs. 1.5 – 1.8).  

 

 



 

For Phase 2, the model successfully predicted first-order selection. Simulated packs overlapped 67.44% 
of the distribution estimated for real wolves in Montana, and 13.96% of the area beyond this estimated 
distribution (Sells 2019). Predictions matched trends observed empirically for the relationship of territory 
size with food abundance (Fig. 1.5), competitor density (Fig. 1.6), human density (Fig. 1.8), and 
ecoregion (Fig. 1.9).  

The model successfully predicted second-order selection. The model reliably predicted territory sizes of 
observed packs (Fig. 1.10), as the slope of the linear regression of predicted versus observed territory size 

Figure 1.5. The mechanistic territory model’s qualitative (Panel A) and quantitative (Panel B) predictions for the effects of 
prey abundance on territory size. Lines depict smoothed conditional means. Predictions aligned with empirical observations 
for wolves in Montana. 
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encompassed 1.0 (95% CI = 0.31 – 1.16; adjusted R2 = 0.29). Accuracy of exact spatial predictions varied 
by pack (Fig. 1.11). On average the model correctly predicted 56.14% (range 34.87 – 80.83%) of the total 
1-km2 grid cells used by each real pack. Accordingly, even though second-order spatial predictions were 
shifted slightly from what was observed, on average the model correctly predicted over half of the 1-km2 
patches included in observed territories, without using any empirical data from wolves. 

Discussion 

As an outcome of natural selection (Darwin 1859), animals should tend to have higher fitness if they 
behave economically, particularly in terms of fundamental behaviors like territory selection. We 
hypothesized that gray wolves select territories economically based on the benefits of food resources and 
costs of competition, travel, and mortality risk. Our mechanistic model for territory selection provided a 
means to test the hypothesis that wolves select territories economically based on these benefits and costs 
(Sells 2019). Absent any input data, the model predicted empirically-observed patterns for the effects of 
food, competition, and mortality risk, demonstrating how territory size can be expected to decrease and 
overlap to increase with greater densities of prey and competitors, and how territory size and overlap may 
respond parabolically with increasing human densities. Using limited, readily-available data for food 
resources, terrain ruggedness, and human density, the model predicted first- (i.e., distribution) and 
second-order selection (i.e., the sizes and locations of territories) for wolves in Montana. It accomplished 

Figure 1.6. The mechanistic territory model’s qualitative (Panel A) and quantitative (Panel B) predictions for the effects of 
inter-pack competition on territory size. Lines depict smoothed conditional means. Predictions aligned with empirical 
observations for wolves in Montana.  
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these predictions without using empirical data for wolves. These results support the hypothesis that 
wolves select territories economically based on the benefits and costs of territory ownership. 
Understanding wolf behavior in relation to these benefits and costs will help keep POM estimates 
calibrated. 

Model predictive capacity and support  

The model had high predictive capacity. Predictions aligned with trends observed empirically for the 
relationships of territory size with food abundance, competition, pack size, and population density (Figs. 
1.3 – 1.6) in Phase 1. In Phase 2, the model predicted first-order selection. It predicted that the majority of 
Montana recently occupied by real wolves would be selected for territories and areas not part of real wolf 
distribution would be largely avoided (Sells 2019). Predicted and observed territory sizes in relation to 
prey abundance, pack density, human density, and ecoregions were also well aligned. Without using data 
for wolves, the model successfully predicted second-order selection for specific territories (Johnson 1980) 
at a 1-km2 scale. The model accurately estimated individual territory sizes (Fig. 1.10) and territory 
locations (i.e., on average > 50% of predicted patches were used by the real pack; Fig. 1.11). Territory 
shapes were also more aligned than expected (Fig. 1.11) given that any empirically-observed wolf 
territory is a snapshot in time, and territories are in constant flux.  

The predictive capacity of the model supports the 
hypothesis that wolves select territories 
economically based on the benefits of food 
resources and costs of competition, travel, and 
mortality risk. Ability to predict the location, size, 
and shape of individual wolf territories absent 
empirical data for wolves provided especially 
strong evidence that the model suitably captured 
the mechanisms driving wolf territory selection. 
This means that model’s predictions can be used 
to understand and anticipate behavioral responses 
of wolves to variable conditions they encounter, 
such as fluctuating prey or pack densities.  

Effects of prey abundance 

By maintaining economical territories, wolves can 
be expected to generally decrease their territories 
and increase territory overlap in response to 
greater prey abundances (Fig. 1.5). Smaller 
territories with more overlap means that densities 
and numbers of packs are likely to be relatively 
high where prey populations are high. Fluctuating 
prey populations can be expected to cause 
territory size and overlap to also fluctuate. 
Altogether these effects could influence the  

  
Figure 1.7. The mechanistic territory model’s qualitative 
predictions for the effects of pack size on territory size. 
Lines depict smoothed conditional means. Predictions 
aligned with empirical observations for wolves in Montana.  



 
accuracy of abundance estimates from POM (Fig. 1.1) if not unaccounted for, particularly when 
estimating wolf abundances at finer spatial scales than the statewide level, where local prey populations 
can be highly variable. Using this understanding of how territorial behavior can be expected to vary with 
prey populations, POM estimates can be calibrated for finer spatial scales (e.g., at MFWP regional 
management levels) and into the future as prey populations fluctuate.  

Effects of competition 

By maintaining economical territories, wolves can be expected to compress their territories and increase 
territory overlap in response to greater inter-pack competition (Fig. 1.6). Packs may therefore reach 
higher densities than would be estimated using a snapshot of average observed territory sizes alone. For 
example, Rich et al. (2012) reported an average territory size of 599.8 km2 for packs in 2008 – 2010. 
Although this mean territory size has been presumed to date to be unchanged, territory sizes have 
considerably declined when estimated for 2014 – 2019 using comparable methods (Sect. 1.2). Territory 
compression explains why the estimated distribution of wolves has not increased at comparable rates as 
the estimated number of packs. For example, an estimated ~65% increase in the number of packs from the 
years of Rich et al. (2012)’s study to ours yielded an estimated 41% increase in area occupied (Montana 
Fish Wildlife and Parks 2018). Packs are thus likely to have more neighboring territories in recent years 
than they did a decade ago, increasing the costs of competition and leading to territory compression. 

Panel A 

 

Panel B   

  

Figure 1.8. The mechanistic territory model’s qualitative (Panel A) and quantitative (Panel B) predictions for the effects of 
prey abundance on territory size. Lines depict smoothed conditional means. Predictions aligned with empirical observations 
for wolves in Montana. 



Similarly, Fritts and Mech (1981) reported that territories shrank by as much as 68% as density of packs 
increased during recolonization in Minnesota. These results indicate that occupancy and wolf distribution 
can be expected to be more stable than territory sizes and pack densities as packs adjust their space use in 
response to levels of intraspecific competition. Understanding these changes will be important for keeping 
POM estimates calibrated as the wolf population fluctuates. Assessing wolf occupancy without also 
accounting for territory sizes within the occupied area could easily over- or under-estimate wolf 
abundance estimates. 

Effects of pack size 

Maintenance of economical territories is expected to cause territory sizes to vary inversely with pack sizes 
at high population densities (Fig. 1.7). Conversely, territory size is not expected to fluctuate with pack 
size when population densities are low. As predicted if competitive ability influences the cost of 
competition for wolves, territory and pack size varied inversely during our study, during which population 
density was high (an estimated 11 – 13 wolves per 1,000 km2 on average; Montana Fish Wildlife and 
Parks 2018). Mattisson et al. (2013) reported a similar relationship for wolves in Scandinavia. Also 
consistent with model predictions, Rich et al. (2012) reported a weak but negative-trending relationship at 
lower population densities in Montana a decade prior, and Thurber and Peterson (1993) and Kittle et al. 
(2015) reported no effect of pack size for low-density wolf populations.  

The inverse relationship between 
territory and pack size is potentially 
counterintuitive, as it might be 
expected that larger packs should 
require larger areas to provide 
sufficient food resources for pack 
members. Larger territories do not, 
however, necessarily provide more 
resources or greater quality, 
particularly after accounting for 
energetic costs of maintaining a 
large territory. Larger packs could 
instead kill prey at higher rates to 
meet resource requirements, as 
evidenced by an increase in 
mortality rates for elk where packs 
are larger in Idaho (Horne et al. 
2019).  

Based on these results, it is likely 
that larger packs will have greater 
success in claiming and defending 
high-quality territories, which in 
turn may induce a positive 
feedback loop with pack size. 

  
Figure 1.9. The mechanistic territory model predicted that territory sizes 
would vary by ecoregion. These predictions aligned with observations. 
Predictions for the Northwestern Glaciated Plains represent what may be 
observed in the future, as only a single territory was recorded here since wolf 
recovery began. 
 



Accordingly, where territories are estimated to be largest (e.g., through using Figs. 1.5 or 1.6), the packs 
within may be among the smallest observed.  

Effects of mortality risk 

Through maintaining economical territories, wolves may adjust their space use in relatively nuanced ways 
to mortality risk (Fig. 1.8). Territory size was predicted and observed empirically to increase and then 
decrease parabolically with an increase in human density, whereas overlap was predicted to have the 
opposite response. Mortality risk appears to be important for how wolves select territories; without this 
cost, some simulated packs attempted to settle urban areas, which they avoided when this cost contributed 
to the economics of territory ownership (Sells 2019). Urban areas often occur along Montana’s valley 
bottoms, which also attract ungulates. These areas almost certainly were once home to wolf packs until 
heavy habitation and mortality risk likely tipped the economic value for wolves. We expect that in areas 
with lower mortality risk, e.g., national parks, the risk of mortality from humans would be relatively 
unimportant to how wolves select territories.  

Based on our results, the influence of humans on wolf behavior may be important for keeping POM 
estimates calibrated (Fig. 1.8). For the majority of Montana, territory sizes and resulting pack densities 
can be expected to vary slightly parabolically with human density (Sells 2019). Wolves can be expected 
to generally avoid areas with high human densities; few packs were predicted or observed to maintain 
territories with > 15 humans per km2. The influence of human-caused mortalities on territory size and 
pack size was assessed in Sections 1.4 and 1.5; however, Fig. 1.5 also provided relevant predictions: 
greater mortalities are likely to be associated with an increase in territory size because mortalities reduce 
pack size (Sect. 1.5).  

General spatial trends in territory size  

Economical territory selection was predicted to 
lead to spatial variation in means and ranges of 
territory sizes. Density plots of predicted 
territory sizes by ecoregion are expected to 
better depict the true variation in territories for 
the state of Montana than could be summarized 
from limited empirical observations (Fig. 1.9). 
Spatial variation in territories can arise through 
disparities in any one benefit or cost of territory 
ownership (e.g., prey or pack densities), or as 
an outcome of the interacting effects of these 
benefits and costs. Spatial variation in mean 
territory size would influence the local densities 
of packs, and the abundance estimates from 
POM. Accordingly, this spatial variation in 
territory sizes can be incorporated into POM to 
improve accuracy of abundance estimates.  

 
Figure 1.10. The mechanistic territory model reliably predicted 
the sizes of specific territories compared to what was observed 
empirically in packs with GPS collars.  
  
 



 

Management implications 

Because territory size and overlap influence the number of animals or groups that can use an area, the 
ability to predict territory size and overlap can assist in estimating current and future population sizes and 
carrying capacities. The territory model provides predictions of territory size and overlap across Montana. 
Linking these estimates with the spatially-explicit occupancy probabilities produced through POM 
enables summarizing the estimated number of packs at any spatial scale, e.g., by wolf management unit, 
deer and elk hunting district, county, watershed, ecoregion, or MFWP region. Ability to predict the effects 
of changing conditions enables calibrating POM into the future, absent intensive monitoring efforts.  

Model parameterization used only readily available data, i.e., indices for ungulate densities, terrain 
ruggedness, and human densities. The model is expected to be predictive and reliable across a full range 
of current and future conditions because it was founded on hypothesized drivers of behavior (Sells et al. 
2018). It also enabled simulating potential future conditions. As a proof of concept, we estimated the 
effects of changing prey densities (current +/− 25 & 50%; Fig. 1.12). Similar outputs for a wide range of 
conditions can be generated for use with POM. 

  

Figure 1.11. Example predictions on a 1-km2 grid for 28 territories for which we had high-quality location data (collected over 
≥ 70% of a year). Repeated simulations produced numerous predictions for each real territory. For this figure we selected 
examples demonstrating good fits with the observed boundaries and arranged results in order of approximate accuracy. Red 
shading indicated true positive predictions, blue false negatives, and yellow false positives.  
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1.4 Empirical Territory Size Models 

We developed empirical models to further summarize and predict patterns in territory sizes of wolves in 
Montana. Our hypotheses were the same as outlined in Sect. 1.3 and detailed in Sells (2019, Chapter 2). 
We also included control removals (lethal removals of wolves in response to livestock depredations) to 
measure the effects of direct mortality on territory size. We hypothesized that mortality risk from humans 
is a primary cost of territoriality for wolves (Sect. 1.3). Wolves are intelligent and adaptable (Packard 
2003), and often avoid humans (W hittington et al. 2004, Hebblewhite and Merrill 2008, Latham et al. 
2011). Whether permanent or limited to specific times of day or seasons, avoidance of sites associated 
with mortality risk could necessitate expansion of the territory to maintain its economic value. 
Accordingly, we hypothesized that territory size would increase if wolves avoid areas where conspecifics 
were recently killed via control removals within the territory.  

Methods 

We generated explanatory variables for empirically-observed territory sizes (Sect. 1.2) using Program R 
(R Core Team 2018). To represent prey resources, we estimated densities of ungulates (deer, elk, and 
moose) in summer and winter (Sect. 1.3). We measured the mean prey densities within an area equivalent 
to the geometric mean territory 
size identified around the pack’s 
KDE centroid (Sect. 1.2). We 
calculated competition as the 
average number of neighboring 
packs (those with territory 
centroids ≤ 25 km of a pack’s 
KDE) in year T and T+1 per 100 
km2 in territory size (Rich et al. 
2012). We estimated pack size as 
the mean of sizes reported in year 
T and T+1 (Coltrane et al. 2015; 
Bradley et al. 2015; Boyd et al. 
2017; Montana Fish Wildlife and 
Parks 2018). We included reported 
removals (harvest, dispersal, etc.) 
because these wolves were present 
for part of the year. We identified 
the number of control removals 
reported for the pack in year T and 
T+1 through MFWP annual 
reports (Coltrane et al. 2015; 
Bradley et al. 2015; Boyd et al. 
2017; Montana Fish Wildlife and 
Parks 2018). Averaging data from 
calendar year T of collar 
deployment and year T+1 

  
Figure 1.12. Example predictions from the mechanistic territory model for 
potential conditions wolves may encounter. In this scenario, prey densities 
have decreased or increased from current levels. Density plots show that the 
population mean territory size (Panel A) increased and overlap (Panel B) 
decreased as prey density declined; the range in territory sizes also increased. 
As prey density increased, mean territory size declined and overlap increased. 



represented conditions that better matched the timing of collar deployment because collars were deployed 
at variable times of year. Where data for variables were unavailable in 2018 or 2019, we used the most 
recent year available. 

We built 25 competing a priori generalized linear mixed models (GLMMs) in R package lme4 (Bates et 
al. 2015). Models represented different hypotheses for which benefits or costs best predicted territory size 
(Sells 2019). Models had multiple fixed effects plus a random effect for pack (family = Gaussian, link = 
log). We identified the most supported models using Akaike’s information criterion corrected for small 
sample size (AICc; Burnham and Anderson 2002) with a cut-off of ∆AICc = 4 (Anderson et al. 2001). 
Results were based on centered and scaled variables (units accordingly were standard deviations from the 
mean). 

To evaluate the territory size model, we dropped each pack in turn, refit the model, and predicted the 
missing pack’s territory size. We estimated a linear regression of observed versus predicted territory sizes. 
If the slope estimate’s 95% CI overlapped 1.0, we considered the predictive model to reliably estimate 
territory size (Rich et al. 2012, Sells 2019). 

Results 

The top GLMM included the summer and winter ungulate indices, competition, pack size, and control 
removals (Fig. 1.13; Table 1.2). No others models were < 4 ∆AICc. Territory size had no relationship 
with the ungulate indices, negative relationships with competition and pack size, and a positive 
relationship with control removals. The model reliably estimated territory size (Fig. 1.14; Table 1.2). The 
slope from the linear regression of observed versus predicted territory sizes overlapped 1.0 (ß = 0.81, 95% 
CI = 0.439, 1.185, adjusted R2 = 0.30, F1,41 = 19.32, P < 0.001).  

Because the top model included pack size and these data may be unavailable in the future due to 
decreased monitoring effort (Inman et al. 2019), we fit a second model omitting this variable. Although 
model support dropped 
(Table 1.2) and performance 
slightly decreased, the linear 
regression of observed versus 
predicted territory sizes also 
overlapped 1.0 (ß = 0.73, 
95% CI = 0.386, 1.069, 
adjusted R2 = 0.29, F1,41 = 
18.49, P < 0.001). Covariate 
estimates were similar to the 
original top model, except the 
winter ungulate index had a 
negative relationship with 
territory size (Fig. 1.13).   

Figure 1.13. Top-supported GLMMs for territory sizes of wolves in Montana. The 
original top GLMM included group counts; because these data may not be available 
in the future, we refit a variation of this model omitting this variable. Thick bars are 
the 90% confidence intervals (CIs), and thinner tails the 95% CIs. 



Discussion 

The top empirical territory size model successfully predicted territory sizes of wolf packs in Montana. It 
furthermore was consistent with the hypothesis that wolves select territories economically (Fig. 1.13; 
Table 1.2; further details in Sells 2019, Chapter 2). This work contributes further evidence and 
understanding for how benefits and costs of territory ownership influence territorial behavior and 
resulting territory sizes. 

The top model revealed interesting effects of prey (Fig. 1.13). As expected (Sect. 1.3), territory size had a 
negative-trending relationship with winter ungulate densities, but a positive-trending relationship with 
summer ungulate densities. Both these effects were uncertain. Based on conclusions from the mechanistic 
territory model and additional empirical analyses (Sells 2019, Chapter 2), our results suggest that wolves 
may optimize their territories first to prey densities that will be available in winter and secondly to those 
in summer. Optimization to winter ungulate densities would cause territory size to decline with increased 
winter ungulate densities (Sect. 1.3; Fig. 1.5). Many wolves disperse in winter (Jimenez et al. 2017), 
meaning they select territories when winter prey resources are a priority. Because ungulate winter range 

Table 1.2. Top multi-variable models for territory sizes. Effects are reported on the log scale, and are centered and scaled.  
Model structure: variable × ß(2.5% CI, 97.5% CI) Log(l)  ∆AICc 

With pack counts   

Bintercept × 6.21 (6.045, 6.383) + ungulatesummer × 0.10 (−0.045, 0.251) + ungulatewinter × −0.13 
(−0.283, 0.031) + competition × −0.52 (−0.604, −0.431) + packsize × −0.16 (−0.240, −0.086) + 
controlremovals × 0.18 (0.140, 0.225) 

−380.1 0 

Without pack counts   

Bintercept × 6.25 (6.054, 6.437) + ungulatesummer × 0.12 (−0.044, 0.285) + ungulatewinter × −0.25 
(−0.412, −0.084) + competition × −0.63 (−0.714, −0.550) + controlremovals × 0.16 (0.115, 0.205)  

−388.4 13.65 

 

  

Figure 1.14. Predicted versus observed territory sizes for 28 packs in Montana. The original top GLMM included group size; 
because these data may not be available in the future, we tested a variation of this model omitting this variable. We 
considered the model reliable if the 95% confidence interval of the linear regression of predicted versus observed sizes 
included 1.0. 
 



generally differs from summer range, territories optimized for winter may have fewer summer prey 
resources unless expanded to encompass ungulate summer range.  

Results were consistent with the hypothesis that competition and mortality risk are primary costs of 
territorial behavior (Fig. 1.13). As predicted by the mechanistic model (Sect. 1.3) and consistent with 
earlier research in Montana (Rich et al. 2012), territory sizes were negatively related to the density of 
neighboring territories. Researchers in Scandinavia reported that territory sizes were only potentially 
negatively related to competition (Mattisson et al. 2013); however, we expect this uncertainty was caused 
by a different measure of competition (a raw number of nearby packs, whereas we scaled by the pack’s 
territory size). As predicted if wolves avoid areas where humans recently killed wolves, greater 
mortalities by control removals were associated with larger territories. Previous empirical work 
demonstrated that wolves avoid humans and areas associated with human hazards (Whittington et al. 
2004, Hebblewhite and Merrill 2008, Latham et al. 2011). Rich et al. (2012) also reported a positive 
relationship between territory size and control removals for wolves in Montana a decade prior.  

Management implications 

By affecting the number of packs that may exist in a given area, territory size directly influences POM 
estimates (Fig. 1.1). Whereas estimating territory size has previously relied on deploying costly radio- and 
GPS-collars, our predictive model reliably estimated territory sizes absent data for wolf locations or 
territory boundaries. The predictive model can thus be used alongside the mechanistic territory model as 
an additional means to estimate territory size and keep POM estimates calibrated into the future. Ongoing 
work will integrate the application of both the mechanistic and empirical territory models for use with 
POM.  

1.5 Pack Size Model 

Sociality strongly shapes demographic processes. In addition to births and deaths, wolf pack size is 
influenced by dispersal decisions. We aimed to better understand mechanisms influencing pack size, and 
to develop a tool for predicting pack size for POM, absent data directly related to births and dispersals 
because these data will be largely unavailable to MFWP.  

We hypothesized that conditions related to prey, competition, and mortality risk would influence births, 
deaths, and dispersals, and in turn wolf pack sizes. We expected that pack size would increase with prey 
abundance (Mech and Boitani 2003). If subordinates cannot meet their food requirements, they should 
likely disperse; additionally, dominant individuals might increase aggression or decrease subordinates’ 
food shares to further encourage dispersal (Mech 1999, Peterson and Ciucci 2003). Greater prey 
abundance conversely may increase the pack sizes that can be maintained, allowing dominants to tolerate 
subordinates and accept immigrants, and enticing subordinates to stay. Because wolves in Montana prey 
on ungulates that migrate seasonally, we further hypothesized that prey abundance either in summer or 
winter could have greater relative influences on pack size. Wolves produce a litter of on average 5 – 6 
pups each spring (Fuller et al. 2003). Where summer prey abundance is low, this influx of new pack 
members could both decrease survival and influence subordinates to disperse. Alternatively, winter prey 
abundance may be more influential because pups reach full size and thus require greater food shares by 
winter (Mech and Boitani 2003). We also hypothesized that greater terrain ruggedness could negatively 
influence pack size by decreasing the availability of ungulates because wolves are coursing predators 



(Peterson and Ciucci 2003) who may make more kills at lower elevations (McPhee et al. 2012) and may 
have lower hunting success in rugged terrain (Rich et al. 2012).  

We hypothesized that the density of conspecific packs could affect pack size by influencing dispersal 
decisions. A high density of packs near an animal’s natal home range or territory could signal insufficient 
space for new home ranges and greater risks of mortality during dispersal, causing less dispersal and 
larger packs. Dominant individuals could also be more tolerant of subordinates and immigrants at high 
densities, when territorial disputes may increase and having a larger pack can increase the odds of 
winning confrontations (Cassidy et al. 2015). We expected that a low density of packs near an animal’s 
natal home range could signal greater odds of finding space, increasing dispersal and decreasing pack size 
to yield a positive relationship between pack size and density of packs (Fritts and Mech 1981, Boyd et al. 
1995, Jimenez et al. 2017).  

We hypothesized that mortalities and the risk of mortality influence pack size. Although mortalities can 
directly decrease pack size, we also hypothesized that as the risk of dying increases, subordinates may 
disperse to avoid this risk. If larger packs are more easily detected by humans, greater risk of mortality 
could likewise lead to smaller packs because dominants may tolerate subordinates less and subordinates 
may disperse to reduce their risk. Mortalities could also lead packs to disband in response (Brainerd et al. 
2008). Alternatively, mortalities could cause pack size to increase if decreased survival leads to 
compensation through increased reproduction or larger litters. The risk of mortality could also lead to 
larger packs through decreased dispersal or greater immigration if mortality risk is diluted in larger packs.  

We hypothesized that a number of factors would influence mortality risk to wolves in Montana. The local 
density of harvest mortalities may both directly influence survival and the perceived mortality risk of 
survivors. The type of harvest (hunting versus trapping) could also be influential. Control removals also 
directly affect pack size, and may influence survivors’ perceived mortality risk. The intensity of harvest 
management may further influence mortality risk. Mortality risk could also increase with low-use roads, 
which humans may use while hunting or otherwise recreating.  

Methods 

We analyzed pack size for wolves in Montana from 2005 – 2018. MFWP wolf specialists monitored 
packs through radio-tracking, camera-trapping, and aerial surveys from 2005 – 2018 to count pack 
members and estimate year-end pack sizes. They classified counts as good, moderate, or poor quality. We 
retained only good quality counts for our analyses (D. Boyd, A. Nelson, T. Parks, and T. Smucker, 
MFWP, pers. comm.). Counts considered to be of good quality were from packs documented multiple 
times each year using trail cameras, visual sightings, or track surveys; public reports also approximated 
the counts of wolf specialists. Wolf specialists estimated an annual territory centroid for each pack using 
either their expert knowledge or location data from wolf collars (radio or global positioning system), 
where available. 

Data for covariates  

We estimated local conditions related to prey, competition, and mortality risk using spatial data. We 
measured the mean value of each spatial covariate within a 483.62 km2 area (hereafter, the approximate 
territory, i.e., the geometric mean territory size for wolves in Montana, 2014 – 2019; Table 1.1) around 



the pack’s annual territory centroid. We measured prey densities as described in Sect 1.3. For 
competition, we measured the mean density of territory centroids per 1000 km2 using the kernel smoothed 
intensity function in R package spatstat (Baddeley et al. 2015) with sigma set to 25 km. From the hunter-
reported locations of harvested wolves each year, we measured mortality risk within each pack’s 
approximate territory as the density of harvest mortalities per 1000 km2 using the kernel smoothed 
intensity function in R package spatstat (Baddeley et al. 2015) with a sigma of 25 km. We derived pack-
specific control removals from MFWP annual reports (fwp.mt.gov). We classified the intensity of harvest 
management as hunting seasons with no harvest (< 2009 and 2010), restricted harvest (2009 and 2011; 
when seasons were shorter, bag limits were low, and trapping was prohibited), and liberal harvest (2012 
on, when seasons were longer, bag limits were higher, and trapping was allowed; fwp.mt.gov).  

Analyses 

We built 24 competing a priori generalized linear models (GLMs; family = Poisson) in R (R Core Team 
2018), representing factors we hypothesized most influenced pack size (Sells 2019). We included 
variables for the density of harvest mortalities, number of control removals, and intensity of harvest 
management in each model because these mortality variables directly influence pack size. We avoided 
combining overly-correlated variables (> 0.6 Spearman’s rank correlation; Sells 2019) in the same model 
(Dormann et al. 2013). We identified the most supported models using Akaike’s information criterion 
(AIC; Burnham and Anderson 2002) with a cut-off of 4 ∆AIC (Anderson et al. 2001) and Akaike weights 
(𝜔𝜔𝑖𝑖; Burnham and Anderson 2002). To further understand the effects of harvest on pack size, we 
conducted single-variable analyses on the effects of hunting and trapping. We reported results based on 
centered and scaled variables, with resulting units representing standard deviations from the mean. 

We tested the predictive performance of supported models by dropping each observation from the dataset 
in turn, refitting the model, and predicting the missing pack’s size. We then averaged annual observed and 
predicted pack sizes and fit a linear regression. If the regression slope estimate’s 95% CI overlapped 1.0, 
we considered the predictive model to reliably estimate annual mean pack size.  

Results  

From 2005 – 2018, MFWP monitored 46 – 152 packs per year for a total of 1531 pack-years. Of these, 26 
– 68 packs per year had good quality counts, yielding 660 total pack-years for analysis. Annual mean 
pack size ranged 4.86 – 7.03 and overall mean pack size was 5.92 (Fig. 1.15).  

Based on AIC, only the top-ranked model had support (𝜔𝜔𝑖𝑖 = 1). The model revealed positive relationships 
between pack size and density of prey in summer and density of packs (Fig. 1.16; Table 1.3). It revealed 
negative relationships between pack size and terrain ruggedness, number of control removals, intensity of 
harvest management, and density of low-use roads. Although the model contained the density of harvest 
mortalities, this variable had no effect. The model reliably estimated mean pack size (Fig. 1.17), as the 
slope from the linear regression of observed versus predicted annual mean pack sizes included 1.0 (ß = 
1.03, 95% CI = 0.484, 1.583, adjusted R2 = 0.58, F1,12 = 16.81, P < 0.002). 

Single-variable analyses revealed additional evidence for the effects of hunting and trapping (Fig. 1.18). 
The density of harvest mortalities (i.e., combined hunting and trapping mortalities), density of trapping 
mortalities, number of control removals, and intensity of harvest management had negative relationships 
with pack size. There was no relationship between pack size and the density of hunting mortalities. 



Discussion 

Group living strongly shapes demographic processes in wolves. Natural selection is expected to have 
shaped group-living animals to maximize benefits and minimize costs of sociality (Krebs and Kacelnik 
1991). Pack size affects many benefits and costs, and is driven by not only births and deaths but the social 
decisions of group members, such as timing of dispersal. We sought to better understand mechanisms 
hypothesized to influence pack size and dispersal decisions, and to develop a tool to help predict pack 
sizes of wolves. Through analysis of wolf packs in Montana for a 14-year period, we found that pack size 
was positively related to densities of prey and packs, and negatively related to terrain ruggedness, 
mortalities, and harvest intensity. Although data for births, deaths, and dispersal could help predict pack 
sizes, these data were largely unavailable. Despite omitting direct information for births, dispersal, and 
most deaths, our model explained variation in pack sizes and produced reliable predictions. 

Pack size increased with prey density  

Consistent with our hypothesis that prey abundance influences births, deaths, and dispersals, greater 
densities of ungulates were associated with larger packs (Fig. 1.16). Packs were smaller in areas of greater 
terrain ruggedness, consistent with our hypothesis that rugged terrain decreases hunting success. Prey 
abundance and vulnerability may affect a pack’s ability to meet its resource requirements, influencing 
births and survival. Litter size and pup survival appear to increase with greater per capita ungulate 
biomass (Fuller et al. 2003) and prey vulnerability (Mech et al. 1998). Prey abundance and vulnerability 
could also affect pack size by influencing the economics of dispersal decisions. Inadequate food may spur 
dispersal; conversely, an abundance of food may cause subordinate individuals to delay dispersal, and 
make dominant individuals more tolerant of subordinates and immigrants. Messier (1985) similarly found 
a positive relationship between moose density and wolf pack size.  

  

  

Figure 1.15. Predicted annual 
mean pack sizes reflected 
observed mean pack sizes for 
wolves in Montana from 2005 – 
2018. The model contained 
variables related to prey, 
competition, and mortality risk. 
 



Densities of ungulates in summer were especially predictive of pack sizes in Montana (Fig. 1.16), 
consistent with our hypothesis that prey shortages in summer could both reduce survival and trigger 
dispersal as a result of an increased demand on the food supply. We expected that summer ungulate 
availability would be important because our summer season encompassed both the springtime influx of 
pups and the peak of pup food needs each fall (Mech and Boitani 2003). Previous studies have shown that 
wolves dispersed at greater rates in response to a lower prey base (Messier 1985), increased food stress 
(Peterson and Page 1988), and lower per capita ungulate biomass (Fuller et al. 2003), supporting the 
possibility that pack size in Montana is influenced by dispersal in response to prey abundance. 

This understanding of the effects of prey density on pack size can help calibrate POM estimates. Packs 
can be expected to generally be larger where prey abundance is higher. Because territories were predicted 
to be smaller (Sect. 1.3) and pack densities higher in areas of high prey densities, altogether the densities 
of wolves are likely to peak where prey densities are greatest. Managing for large ungulate populations 
may therefore increase wolf numbers unless more wolves are harvested in the area. 

Pack size increased with density of packs  

A positive relationship between 
density of packs and pack size was 
consistent with our hypothesis that the 
density of packs may affect both 
survival and the economics of social 
decisions (Fig. 1.16). This supported 
our expectation that wolves could 
potentially maximize their fitness by 
dispersing at low pack densities to 
seek their own territories in which to 
breed, whereas high pack densities 

 

Figure 1.16. The top predictive model for wolf pack sizes in Montana included variables related to prey, competition, and 
mortality risk. Thicker line segments represented 90% CIs, full lines represented 95% CIs, and points represented mean 
estimates. 

 

  

 

Table 1.3. Variables and their 95% confidence intervals (CI)s from a 
predictive model for wolf pack size in Montana. Data were centered and 
scaled, and are reported on the log scale. 

Variable β CIlower CIupper 
Intercept 1.92 1.844 1.992 
Summer ungulate density 0.05 0.021 0.085 
Density of packs  0.06 0.024 0.104 
Terrain ruggedness −0.08 −0.118 −0.046 
Harvest mortality density 0.00 −0.038 0.047 
Control removals −0.09 −0.130 −0.049 
Restricted harvest −0.13 −0.232 −0.026 
Liberal harvest −0.24 −0.343 −0.130 
Low-use road density −0.06 −0.093 −0.025 

 



could cue subordinates that dispersal is uneconomical, increasing pack size as a result. High pack 
densities may also increase the benefit of having a large pack by strengthening its competitive ability 
(Cassidy et al. 2015) and success in defending its territory (Sells 2019). Larger packs at high pack 
densities could thus also be driven by dominants’ increased acceptance of immigrants. Our results 
contribute further evidence that carnivore dispersal is influenced by densities of conspecific groups. 
Previous research showed that wolf dispersal rates declined as did the odds of successful dispersal as 
density of packs increased when wolves were recolonizing Montana (Jimenez et al. 2017). Evidence of 
similar changes in dispersal in relation to conspecific density have been reported for lions (Panthera leo; 
VanderWaal et al. 2009) and Ethiopian wolves (C. simensis; Sillero-Zubiri et al. 1996).  

Understanding how pack densities influence pack size can help calibrate POM. Smaller packs can be 
expected where pack densities are low, such as areas of recent recolonization or high mortality (e.g., 
through control removals). If this relationship is caused by dispersal, as hypothesized, then these same 
areas could have relatively rapid colonization. After the territory mosaic begins to fill in, however, pack 
size should generally increase and territories should compress (Sect. 1.3), causing relatively high wolf 
densities.  

Pack size decreased with greater mortality risk  

Greater control removals, harvest intensity, and low-use road densities were predictive of and negatively 
associated with pack sizes (Fig. 1.16; Table 1.3). These mortality-related factors may of course directly 
decrease pack size by decreasing survival of pack members. Smaller packs in areas of greater mortalities 
could also be an outcome, however, of greater dispersal among surviving pack members in response to 
increased mortality risk.  

Trapping appeared to have a greater effect on pack 
size than hunting. Single-variable analyses 
demonstrated that general harvest (accounting for 
both hunting and trapping) and density of trapping 
mortalities were associated with decreased pack size, 
whereas density of hunting mortalities was not (Fig. 
18). Similarly, a restricted harvest intensity (with 
lower bag limits and no trapping) had a weaker 
relationship with pack size than a liberal harvest 
intensity (with higher bag limits and both hunting 
and trapping). Hunting mortalities notably exceeded 
trapping mortalities each year since the advent of 
modern harvest management in Montana (Fig. 1.19). 
The lack of association between pack size and 
hunting mortalities and strong relationship with 
trapping mortalities therefore suggests there are 
important differences in survival and dispersal 
decisions in relation to type of harvest. Wolf hunters 
in Montana have tended to be opportunistic and often 
kill only one wolf per hunter, although a pack may 

 

  
 
 

Figure 1.17. Predicted mean pack sizes were reliable 
because the 95% CI of the linear regression of predicted 
versus observed sizes encompassed a regression of slope 
1.0 (dashed line; Rich et al. 2012).  
 



still be targeted by multiple 
hunters. If trappers more 
intensively target a pack or area, 
they could have greater effects on 
wolf survival, behavior, and 
resulting pack size. Trappers also 
seldom take more than 1 – 2 
wolves each, however 
(fwp.mt.gov). Altogether this 
suggests that trapping may induce 
a stronger behavioral response 
than hunting. This might make 
sense if trappers use areas more 
intensively while setting, 
checking, and maintaining traps; for wolves, such intensive human activity could generate a strong 
response to perceived mortality risk.  

Understanding the differences in effects of hunting versus trapping could help manage the wolf 
population. To reduce pack sizes, trapping may be more effective than hunting. If hunting has a limited 
effect as evidenced by our analyses, extending hunting season lengths or increasing bag limits may have 
limited effect on the wolf population. This knowledge can help predict how pack sizes will vary 
spatiotemporally as harvest pressure changes, which can help calibrate POM. 

Management implications  

To date, pack size estimates have relied on intensive monitoring each year. This is challenging and costly 
in terms of dollars and time. Intensive monitoring is furthermore simply unviable when the number of 
known packs exceeds well over 100 separate groups spread across an estimated 62,000+ km2 area. Failure 
to accurately estimate pack sizes could easily bias POM abundance estimates low or high. 

Our pack size model can help predict pack sizes and improve the reliability of estimates of wolf 
abundance through POM. The model can furthermore predict spatial variation in pack sizes. This enables 

 

Figure 1.18. Single-variable generalized linear models identified relationships 
between wolf pack size and mortality risk. Lines depicted 95% CIs, thicker line 
segments represented 90% CIs, and points represented mean estimates. 
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Figure 1.19. Annual harvest through hunting versus trapping. No trapping occurred in 2009 or 2011. 
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estimating wolf abundances at finer scales than the statewide level, e.g., at MFWP regional scales. It also 
provides a means for predicting the effects of various harvest management decisions or control removal 
actions on pack sizes and wolf abundances.  

1.6 Integration of Models with POM 

Final deliverables from this work will include integrating the territory and pack size models into POM. 
We are currently using the predictive models to develop spatial layers for territory size, territory overlap, 
and pack size, which we will integrate with the occupancy model to seamlessly predict wolf abundance. 
The improved POM will be easily operable by MFWP. The final tools will include the ability to adjust 
and explore model inputs (e.g., prey abundance, harvest intensity, etc.) to predict the effects on wolf 
behavior and resulting wolf abundance estimates. The tools will include the ability to estimate abundance 
at both the state level and finer spatial scales (e.g., within each MFWP region). POM estimates will also 
be incorporated into the adaptive harvest management model (Study Objective #3).  
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OBJECTIVE 2: IMPROVE ESTIMATION OF RECRUITMENT—Allison Keever, Project 2 

ABSTRACT  Breeding pairs (a male and female wolf with ≥2 pups at December 31) have been 
documented for wolves in the NRM as a metric for recruitment. Breeding pairs, however, are an 
ineffective measure of recruitment. Our objectives were to develop methods to estimate recruitment that 
were more biologically credible without data for recruitment. We first developed and tested an empirical 
model to estimate the number of pups per pack and the total number of pups recruited without recruitment 
data. We then developed a predictive model of recruitment based on the components of recruitment: the 
probability a pack reproduced, the probability a pack contained > 1 breeding female, litter size, and pup 
survival. This model was based on empirical models of the components developed in Idaho with 
recruitment data, and provided an estimate of the number of pups per pack. Recruitment of wolves in 
Montana varied annually, and was negatively correlated with abundance and harvest, and positively 
correlated with pack size. With the component model, we accurately predicted recruitment for wolves in 
Montana. These methods provided a more effective measure of recruitment than breeding pairs, and could 
be implemented without recruitment data. 

2.1 Introduction 

Estimating recruitment (i.e., number of young produced that survive to an age at which they contribute to 
the population) of wolves is difficult due to the size of the wolf population and limited time and funding 
for monitoring. Currently, MFWP documents recruitment based on visual counts of breeding pairs (a 
male and female wolf with 2 surviving pups by December 31; U.S. Fish and Wildlife Service 1994). 
These counts, however, are incomplete due to the large number of wolves in the population. Additionally, 
now that states fund their own monitoring programs, future monitoring will not be able to rely on 
intensive counts.  

Recruitment in wolves depends on their social structure. Wolves are cooperative breeders, and pack 
dynamics (e.g., pack tenure, breeder turnover, and number of non-breeding helpers) can affect recruitment 
through pup survival (e.g., Ausband et al. 2015). Cooperative breeding often relies on the presence of 
non-breeding individuals that help raise offspring (Solomon and French 1997), and reduction in group 
size can lead to decreased recruitment in cooperative breeders (Sparkman et al. 2011; Stahler et al. 2013). 
Human-caused mortality through both direct and indirect means (Ausband et al. 2015) and prey biomass 
per wolf (Boertje and Stephenson 1992) have been shown to affect recruitment. As a result, it will be 
important to consider the effects of harvest, pack dynamics, wolf density, and prey availability on 
recruitment. 

Existing monitoring efforts yield insufficient data to estimate recruitment using traditional methods; 
therefore a new approach is needed that does not rely on extensive data. A breeding pair estimator 
(Mitchell et al. 2008) could be used to estimate breeding pairs, but requires knowledge of pack size; such 
data are hard to collect given the size of the wolf population. Additionally, the breeding pair metric is an 
ineffective measure of recruitment because it provides little insight into population growth rate or the 
level of harvest that could be sustained. Recruitment could be estimated by comparing visual counts at the 
den site to winter counts via aerial telemetry (Mech et al. 1998) or by marking pups at den sites (Mills et 
al. 2008). An alternative method could include non-invasive genetic sampling (Ausband et al. 2015) at 



predicted rendezvous sites (Ausband et al. 2010). These methods, however, may not be feasible on large 
scales due to budget and staff constraints.  

We developed an empirical recruitment model (hereafter ERM) using the framework of an integrated 
population model. Integrated population models can be a useful tool for demographic analyses from 
limited datasets, and can increase precision in estimates (Besbeas et al. 2002). Our goals were to 1) test 
accuracy and precision of estimates from the empirical model, 2) evaluate data requirements of the model, 
3) provide estimates that are more biologically credible than the breeding pair metric, and 4) improve 
understanding of variation in recruitment (Sect. 2.2 and 2.3).   

We also developed a predictive model of recruitment based on empirical models of the components of 
recruitment (Sect. 2.4). Recruitment depends on a pack’s success in breeding and giving birth, litter size, 
pup survival, and the number of breeders in a pack. We used the component model to produce predictions 
of recruitment for wolves in Montana. We compared predictions to observed recruitment spatially and 
temporally test the model predictions. Our goals were to 1) reduce need for data to estimate recruitment, 
and 2) improve understanding of variation in the components of recruitment.  

2.2 Develop and Test Empirical Model of Recruitment 

Introduction 

We used an integrated population model framework to estimate recruitment with limited data. Integrated 
population models generally use time-series count data to inform changes in abundance over time, mark-
recapture data to inform survival, and survey data to inform recruitment (Abadi et al. 2010; Schaub and 
Abadi 2011). With an integrated population model it is possible to estimate recruitment with only survival 
and count data, because changes in abundance over time contain information on changes in vital rates.  

We adapted the integrated population model to account for the social structure of wolves. Traditional 
integrated population models inherently ignore social structure which can greatly affect demography (Al-
Khafaji et al. 2009). For wolves, the population is a collection of packs and the packs themselves are a 
collection of individuals. Within a pack, wolves can survive, disperse, or be recruited. Packs similarly can 
dissolve and new packs can form. The processes that occur within a pack (e.g., dispersal) can affect the 
processes that occur among packs (e.g., pack formation).  

We conducted a simulation study to determine whether the ERM would be useful to estimate recruitment 
of wolves. For the model to be useful for monitoring wolves in Montana, it needs to produce accurate 
estimates and require less field data (e.g., group counts and collars). The benefit of a simulation study is 
that we know the true number of wolves and their demographic rates, allowing us to compare estimates 
from the model to truth to assess accuracy. We also determined the accuracy of estimates with decreasing 
amounts of group count and collar data (i.e., considering a similar amount of data as collected in the past 
and less).  



Methods 

Model structure 

We developed an ERM to 
estimate recruitment of 
wolves in Montana and 
evaluate factors causing 
spatial and temporal 
variation. To account for 
social structure of wolves 
we modeled the processes 
that occur within packs 
and the processes that 
occur among packs 
(Figure 2.1). We used 1) 
estimates of abundance 
from POM to inform 
changes in abundance 
over time, 2) estimates of colonization and extinction from POM to inform group formation and 
extinction, 3) group counts to inform changes in pack size over time, 3) GPS and VHF collar data to 
estimate survival, and 4) data from the literature to model dispersal (Jimenez et al. 2017). We ignored 
adoption of individuals into the pack because we assumed it was rare. Recruitment was the only 
parameter without data and could therefore be estimated.  

We used POM (MacKenzie et al. 2002; Miller et al. 2013; Rich et al. 2013) to estimate the area occupied 
by wolves and colonization and extinction rates. Using the mean territory size estimated by Rich et al. 
(2012) in 2008–2009, we estimated the number of packs by dividing area occupied by mean territory size. 
We estimated mean group size based on group count data (Montana Fish Wildlife and Parks 2018), and 
multiplied mean group size by the number of packs to estimate abundance. Models from Objective 1 
(territory and group size) could also be incorporated to improve estimates of abundance in this model.  

We estimated survival using a discrete-time proportional hazards model with a complementary log-log 
(cloglog) link function. We used 4 discrete periods for analyses: the denning period (April-May), 
rendezvous period (June-August), the hunting-only period (September-November), and the 
hunting/trapping period (December-March). GPS and VHF collared adult and yearling wolves from 2007-
2016 provided the known-fate data needed to estimate survival. We did not include wolves that were 
removed for livestock depredation in survival analysis as these have inherent sampling bias. We included 
a random year effect on survival to account for yearly variation. 

We modeled recruitment as the number of pups per pack using generalized linear models with a log link 
function. The linear predictor could then be described using covariates to test hypotheses about factors 
influencing recruitment. For the simulation study we included a random effect of year to account for 
annual variation.  

 

Figure 2.1. Diagram of ERM model structure for wolves that accounts for the hierarchy of 
demography in wolf population dynamics. Blue circles represent processes that occur among 
packs and red circles represent processes that occur within packs. 

 



Data simulation 

We simulated a wolf population for 15 years and then sampled from the population. We first generated 
100 wolf packs with group counts using a Poisson distribution with an average pack size of 7 wolves. We 
then randomly generated survival, recruitment, and dispersal rates using a uniform distribution with a 
range of biologically realistic rates for each year (Murray et al. 2010; Smith et al. 2010; Ausband et al. 
2015; Stenglein et al. 2015). This allowed for yearly variation in the demographic rates, which we 
recorded as truth. The simulated wolves in the initial 100 packs survived and reproduced based on these 
demographic rates. We included stochasticity using a Poisson distribution for reproduction and a binomial 
distribution for survival and dispersal. The number of packs was determined by generating random patch 
occupancy, colonization, and extinction rates from biologically realistic rates for each year and 
calculating the area occupied by wolves. We divided the area occupied by wolves by 600km2 (Rich et al. 
2012) to determine the number of packs for our truth to which estimated could be compared.  

We sampled group count data and estimates of mean group size from these packs. We summed the 
number of wolves in packs to calculate true total abundance. We sampled from the individual wolves to 
create the collar datasets. We used different amounts of data from the simulated population to evaluate the 
amount of data needed to get reliable estimates of recruitment. For group counts we randomly sampled 50 
packs per year, which represented the maximum amount of data collection that field biologists could 
realistically do each year (K Podruzny, pers. comm.). Additionally, we randomly sampled 25 and 12 
packs per year to create datasets representing reduced monitoring effort. We added observation error to 
these counts so that the data were also a sample of wolves within the pack. Because the goal of MFWP is 
to expend less field 
effort for wolf 
monitoring, we also 
tested the model 
without any group 
data. This yielded 4 
total datasets (50, 
25, 12, and 0 pack 
counts per year). 
For collar data we 
sampled 20 and 10 
wolves per year to 
generate known-
fate observations. 
We then sampled 
and created datasets 
for 20 and 10 
collars every year, 
every 2 years, and 
every 5 years (6 
datasets). We used 
every combination 
of the collar and 

Table 2.1. Mean percent error and standard deviation of estimates from an integrated population 
model for recruitment (𝛾𝛾), mean group size (𝐺𝐺), abundance (𝑁𝑁), and survival (𝜙𝜙) from truth for a 
simulated wolf population with different amounts of collar and group count data. The greater the 
percent error, the less accurate the estimate. The mean and SD were calculated as the mean from all 
group count datasets for the number of collars and for group counts it is the mean from all collar 
datasets.  

Number of collars �̅�𝛾 (𝑆𝑆𝑆𝑆) 𝐺𝐺 � (𝑆𝑆𝑆𝑆) 𝑁𝑁� (𝑆𝑆𝑆𝑆) 𝜙𝜙� (𝑆𝑆𝑆𝑆) 

10 29.5% (22.90%) 5.7% (3.05%) 9.9% (8.23%) 8.6% (6.46%) 

10 every 2 years 30.6% (26.35%) 5.7% (3.05%) 9.7% (8.02%) 11.3% (8.41%) 

10 every 5 years 55.1% (28.99%) 5.8% (3.06%) 8.9% (7.05%) 31.6% (21.58%) 

20 27.8% (22.08%) 5.7% (3.05%) 9.3% (7.95%) 8.1% (6.05%) 

20 every 2 years 30.7% (21.41%) 5.7% (3.05%) 9.4% (7.98%) 10.1% (6.97%) 

20 every 5 years 63.7% (29.36%) 5.8% (3.05%) 8.6% (7.68%) 36.3% (22.01%) 

Group Counts     

0 54.5% (33.27%) NA 15.9% (7.81%) 20.0% (18.64%) 

15 39.8% (29.75%) 5.8% (3.33%) 7.3% (7.36%) 19.5% (20.16%) 

25 40.8% (26.53%) 5.5% (3.15%) 6.7% (5.60%) 21.0% (20.13%) 

50 23.2% (13.78%) 5.9% (2.55%) 7.2% (6.16%) 10.2% (8.61%) 

 

 



group count datasets for a total of 24 scenarios. For each scenario we generated occupancy data by 
sampling 500 sites with 5 occasions per year. We did not evaluate the amount of occupancy data needed 
to provide reliable estimates because those data are relatively inexpensive to collect and those methods 
have been used by MFWP since 2007. 

We estimated recruitment using the model for all 24 scenarios. We compared estimates of recruitment to 
truth and calculated the percent error for each of the scenarios. We used Markov chain Monte Carlo 
(MCMC; Brooks 2003) methods in a Bayesian framework to fit the ERM using program R 3.4.1 (R Core 
Team 2017) and package R2Jags (Su and Yajima 2015) that calls on program JAGS 4.2.0 (Plummer 
2003). We ran 3 chains for 100,000 iterations. We discarded the first 50,000 iterations as a burn-in period 
and used a thinning rate of 2.  

Results 

The models for all scenarios using group count data converged and had Gelman-Rubin statistics < 1.1 for 
each parameter. The scenarios with 50 group counts were most accurate in estimating recruitment across 
collar datasets, and scenarios with 25 and 15 group counts were comparable in accuracy of estimating 
recruitment across collar datasets (Table 2.1). Recruitment estimates with 15 and 25 group counts and 20 
or 10 collars at least every 2 years were similar to recruitment estimates with 50 group counts and the 
same collar data (Figure 2.2). Models for scenarios without group count data (not accounting for social 
structure) had trouble converging, and those that did converge were less precise and accurate than 
scenarios with group counts. Survival estimates for scenarios with 10 or 20 collars at least every 2 years 
were accurate for all amounts of group count data, and survival estimates were only inaccurate for 10 or 
20 collars every 5 years and 25 group counts or less (Figure 2.3). Estimates of abundance were similarly 
accurate for all scenarios, however the scenarios without group counts were less precise.  

 

Figure 2.2. Estimates of recruitment in number of pups per pack that survive 1 year (orange circles) from an integrated population 
model compared to truth (blue circles) for a simulated wolf population with different amounts of group count and collar data. 



Discussion 

Given our goal was to provide a method to estimate recruitment that is both biologically credible and cost 
effective, a main determinant of success would be the amount of data required. Simulations suggest that 
the ERM can be a viable method to estimate recruitment; however group count data greatly increase the 
precision and accuracy of estimates. There appears to be little benefit (accuracy of estimates) to increase 
monitoring efforts from 10 collars every 2 years and 15 group counts to 1) 20 collars every 2 years or 2) 
10 or 20 collars every year. Similarly, there appears to be little benefit (accuracy of estimates) to increase 
monitoring from 15 group counts and 10 collars every 2 years to 25 group counts with the same collar 
data. There was an increase in accuracy, however, with 50 group counts.  

The other objective of this work was to provide a method that is more biologically credible than the 
breeding pair metric. The breeding pair metric estimates the probability a pack contains a breeding pair. 
Using the breeding pair metric a manager can determine how many packs recruited at least 2 pups and a 
minimum of recruitment, however the ERM can estimate the number of pups recruited per pack. Further, 
because the model was developed in a Bayesian framework we can estimate other derived quantities of 
recruitment such as the total number of pups recruited to the population. Future research could also 
evaluate the accuracy of these quantities of recruitment. We can also use the ERM to answer biological 
questions about variation in the number of pups produced per pack to improve understanding of wolf 
population dynamics.  

 

Figure 2.3. Estimates of survival (orange circles) from an integrated population model compared to truth (blue circles) for a 
simulated wolf population with different amounts of group count and collar data. 



2.3 Estimate Recruitment in Montana 

Introduction 

Recruitment in wolves can be a driving factor of population growth. A pair of wolves that breeds 
produces an average of 4-6 pups per litter which can more than double the population (Fuller et al. 2003). 
Further, because pups tend to be the largest age class in the population (Fuller et al. 2003) future 
population size is mainly determined by pup recruitment. Variation in recruitment therefore can cause 
variation in population growth rate.  

We evaluated how recruitment in wolves varied across Montana. We tested the hypothesis that variation 
in recruitment of wolves was driven by intrinsic factors. Intrinsic factors within a pack such as pack size 
and composition can affect recruitment of pups (Ausband et al. 2017a; Ausband 2018). The number of 
non-breeding helpers in a group influences recruitment of young in many species that cooperatively 
breed, including wolves (Solomon and French 1997; Courchamp et al. 2002; Stahler et al. 2013; Ausband 
et al. 2017a). Therefore, we predicted that recruitment would be positively correlated with pack size. 
Another intrinsic factor that could affect recruitment is density. Conspecific aggression can negatively 
affect survival (Cubaynes et al. 2014), which could decrease recruitment of pups directly or indirectly and 
we predicted a decrease in recruitment with population size. Gude et al. (2012) and Stenglein et al. 
(2015b) found evidence of density-dependence in recruitment, and density may be an important intrinsic 
factor driving recruitment. Accordingly, we predicted that pack size or population density would explain 
most of the variation in recruitment.  

Alternatively, we hypothesized that extrinsic factors drive variation in recruitment. If so, we predicted 
that winter severity, forest cover, road density, or harvest would explain most of the variation in 
recruitment. Forest cover is positively associated with occupancy of wolves (Rich et al. 2013; Bassing et 
al. 2019), and may be associated with security cover from humans (Llaneza et al. 2012). If so, we 
predicted that recruitment would increase with forest cover. A proxy for availability of prey could be 
winter severity. Winter severity (e.g., snow depth) increases the vulnerability of ungulates to predation by 
wolves (Huggard 1993; Post et al. 1999; Mech and Peterson 2003). Further, fluctuations in wolf 
populations have been linked, via fluctuations in prey, to fluctuations in winter severity (Peterson 1974; 
Mech et al. 1998; Mech and Fieberg 2015). If so, we predicted that winter severity would be positively 
correlated with recruitment. Harvest both directly and indirectly reduces recruitment (Ausband et al. 
2015, 2017a), and it could cause significant spatial and temporal variation in recruitment if harvest varies 
spatially or over time. Spatial variation in harvest may be difficult to quantify, however road density 
could be used as a proxy for spatial risk of harvest. Although wolves avoid high-use roads (Thurber et al. 
1994), low-use roads may be correlated with increased risk of harvest mortality by increasing access to 
hunters and trappers (Person and Russell 2008). We predicted that recruitment would decrease in years 
with harvest and in areas of increased road density.  

Methods 

We used the ERM to estimate and evaluate variation in recruitment of wolves in Montana. We used three 
datasets that were available from ongoing monitoring in Montana: hunter surveys, global positioning 
system (GPS) and very-high-frequency (VHF) collars, and group counts. We used hunter surveys 



representing detection/non-detection data to estimate occupancy of wolves from 2007-2016 (see Rich et 
al. [2013] and MFWP [2018] for details). We used data for adult and yearling wolves collected by VHF 
and GPS collars deployed by MFWP biologists from 2007-2017. Group counts were collected by MFWP 
biologists annually. We used the end-of-year group counts from MFWP (Montana Fish Wildlife and 
Parks 2018) for wolves in Montana from 2007-2017 that the biologists considered complete (i.e., 
designated as “good quality”).  

We classified low-use road density as either 4-wheel-drive or 2-wheel-drive roads (Rich et al. 2013; 
Montana Fish Wildlife and Parks 2018) and calculated road density within a 600 km2 buffer around the 
pack centroid, which represented average territory size of wolves (Rich et al. 2012, 2013). We removed 
roads in areas with human population densities > 25 people/km2 because we assumed these represented 
high-use roads. We also calculated the proportion of the buffer covered by forest using ArcGIS (ESRI 
2011). Forest cover was assessed by reclassifying 90 m2 land cover pixels into forest and non-forest (Gap 
Analysis Project, Wildlife Spatial Analysis Lab, University of Montana). Data for forest cover and road 
density were from 2013, and we assumed this varied little over time. Harvest was a binary variable that 
was 1 in years with harvest and 0 in years without harvest. For winter severity, we used the average daily 
snow depth for the previous water year (October 1 – September 30 the following year) from SNOTEL 
(https://www.wcc.nrcs.usda.gov/snow/). We used the log of estimated population size and pack size. We 
also included a random effect for the FWP region of the pack centroid and a random effect of year as 
covariates to account for additional spatial and temporal variation. We had 2 candidate models that 
represented the intrinsic hypothesis and 4 candidate models that represented the extrinsic hypothesis 
(Table 2.2), and selection was based on posterior deviance. We only considered univariate models 
because we did not have recruitment data and did not want to over-parameterize the model. We repeated 
analyses as detailed above to estimate recruitment for wolves in Montana. We ran 3 chains for 100,000 
iterations with the first 50,000 discarded as a burn-in period and a thinning rate of 3. We monitored 
convergence using visual inspection of the MCMC chains and the Gelman-Rubin diagnostic (Gelman and 
Rubin 1992). All 
results are presented 
with mean and 95% 
credible intervals 
unless otherwise 
specified.  

Results 

A total of 114 adult 
and yearling wolves 
(63 females and 51 
males) were 
collared from 2007 
– 2016 that were 
not removed for 
livestock 
depredation. The 
wolves were 

Table 2.2. Deviance statistics (mean and standard deviation) and number of parameters (K) used for 
model selection to estimate recruitment of wolves in an integrated population model and test 2 
alternative hypotheses. We tested the hypothesis that recruitment in wolves was driven by intrinsic 
factors such as density-dependence (population size) or pack size. Alternatively we hypothesized that 
recruitment was driven by extrinsic factors including years with and without harvest, proportion of 
territory with forest cover, snow-depth for the previous water year, and density of low-use, 4-wheel 
drive and 2-wheel drive roads within the territory. Lower deviance suggest more model support, and 
we considered those within a SD of the top model to have support.  

Model Hypothesis K Mean SD 

𝛾𝛾 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆 + 𝜏𝜏𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 + 𝜏𝜏𝑅𝑅𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 Intrinsic 4 21021.12 163.65 

𝛾𝛾 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆 + 𝜏𝜏𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 + 𝜏𝜏𝑅𝑅𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 Intrinsic 4 21025.56 162.31 

𝛾𝛾 ~ 𝐻𝐻𝑃𝑃𝐻𝐻𝐻𝐻𝑆𝑆𝐻𝐻𝑃𝑃 + 𝜏𝜏𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 + 𝜏𝜏𝑅𝑅𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 Extrinsic; human 5 21026.36 162.51 

𝛾𝛾 ~ 𝐹𝐹𝑃𝑃𝐻𝐻𝑆𝑆𝐻𝐻𝑃𝑃 + 𝜏𝜏𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 + 𝜏𝜏𝑅𝑅𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 Extrinsic; prey 4 21642.61 162.51 

𝛾𝛾 ~ 𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆 + 𝜏𝜏𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 + 𝜏𝜏𝑅𝑅𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 Extrinsic; prey 4 21920.63 1265.98 

𝛾𝛾 ~ 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝐻𝐻 + 𝜏𝜏𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 + 𝜏𝜏𝑅𝑅𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 Extrinsic; human 5 22247.85 167.08 

 



captured in 72 unique packs with an average of 1.58 (SD=1.58) collared wolves per pack. Of these 
wolves, 49% were adults and 36% were yearlings. The age class of the remaining 15% was unknown. The 
number of collared wolves per year ranged from 14 in 2007 to 48 in 2016. Of the 114 collared wolves, 46 
had an unknown fate and were censored the time period of their last known location. Of those that were 
censored, 11% had the collar drop off and 22% had collar failure. The leading cause of death for the 50 
wolves with documented mortality was legal harvest (n=24), followed by poaching (n=8). The remaining 
mortality was other human-caused mortality (n=6), natural mortality (n=6), and unknown cause of 
mortality (n=6). The average number of months a wolf survived was 24.2 (SD=11.74), and ranged from 
2.2 – 67.4 months.  

We excluded 527 group count observations (44.2%) of the original group count dataset because they were 
not classified as “good” or “moderate” quality by MFWP biologists. The final dataset included 664 group 
count observations from 217 packs, 2007-2016. The mean observations per year was 66.4 (SD=18.1, 
range=34–94). On average, each pack had 3.09 observations (SD=2.13), with 1 pack contributing 10 
observations (i.e. 10 years of good or moderate quality counts). Average pack size for the 10 years was 
5.7 (SD=2.91), and ranged from an average pack size of 4.96 (SD=2.24) in 2016 to 7.03 (SD=3.13) in 
2007. During the period when wolves were listed under the ESA (2007-2008, 2010) average pack size 
was 6.6 (SD=3.30; n=139), and during the delisted period (2009, 2011-2016) average pack size was 5.5 
(SD=2.76; n=525).  

All models 
converged, with 
Gelman-Rubin 
statistics of <1.1 
for all 
parameters. 
Parameters with 
Gelman-Rubin 
statistics close to 
1.1 had good 
mixing of chains 
with visual 
inspection of 
diagnostic plots. 
The model with 
the lowest mean 
deviance 
included a 
density-
dependent effect 
(Table 2.2). 
There was a 
negative 
correlation 
between 

 

Figure 2.4. Estimates of recruitment rate (mean number of pups per pack; A, B) and total number of 
pups recruited (C, D) for gray wolves in Montana to 5 (A, C) and 17 months of age (B, D) estimated 
from an integrated population model for 2007-2015. Line widths represent the 66% and 95% CRI. 
Shaded areas represent years in which wolves were protected under the Endangered Species Act and not 
harvested. 



population size and recruitment rate to 17 months, and we found a 2.4% (0.01 – 7.9%) decline in 
recruitment with a 10% increase in population size. The effect of population size on recruitment rate to 5 
months was uncertain, and the 50% CRI contained 0. There were 2 competing models within the standard 
deviation of the top model that included 1) pack size and 2) harvest (Table 2.2). Pack size had a positive 
effect on recruitment rate to 5 months and a 0.79 probability of a positive relationship with recruitment 
rate to 17 months of age. We found for each additional wolf added to the pack, recruitment rate to 5 and 
17 months of age increased by 9% (5.5 – 13.1%) and 4% (1.4% decrease to 11.9% increase), respectively. 
We found a 0.88 probability that harvest was correlated with decreased recruitment to 17 months and 
found recruitment decreased by 22% (59.8% decrease – 9% increase) in years with harvest. The 
correlation between harvest and recruitment to 5 months of age was positive, however the relationship 
was uncertain and the 50% CRI contained 0. 

Recruitment rate of pups to 5 months of age and to 17 months of age was variable across years. All 
reported estimates are from the top model with population size. Mean recruitment rate to 5 months of age 
ranged from 2.34 (1.62 – 3.06) to 4.07 (3.16 – 5.08) wolves per pack, whereas mean recruitment rate to 
17 months of age ranged from 1.79 (1.25 – 2.35) to 3.13 (2.45 – 3.87; Figure 2.4) wolves per pack. 
During years without harvest, the mean recruitment rate to 5 and 17 months of age was 3.55 (2.62 – 4.61) 
and 3.00 (2.33 – 3.73) wolves per pack, respectively. During years with harvest, however, the mean 
recruitment rate to 5 and 17 months of age was 3.25 (2.08 – 4.48) and 2.20 (1.48 – 3.10) wolves per pack, 
respectively. We found the total number of pups recruited to 5 months of age ranged from 285 (213 – 
367) to 667 (511 – 840), whereas the total number of pups recruited to 17 months of age ranged from 261 
(206 – 319) to 371 (240 – 516; Figure 2.4). We found that survival rates also varied annually and was 
higher during years without harvest (0.78, 0.684 – 0.886) than years with harvest (0.55, 0.475 – 0.620; 
Figure 2.5). The biological period with the greatest survival rate was the denning period (April-May; 
0.96, 0.929 – 0.987) followed by the rendezvous period (June-August; 0.88, 0.827 – 0.931), the hunting 
only period (September-November; 0.86, 0.802 – 0.900), and then the hunting and trapping period 
(December-
March; 0.83, 
0.763 – 0.881). 
The greatest 
difference in 
survival by period 
during years with 
and without 
harvest was 
during the 
trapping period. 
Survival during 
the trapping 
period for years 
with harvest was 
0.79 (0.716 – 
0.860) compared 
to 0.92 (0.858 – 

 

Figure 2.5. Estimates of survival rate and 66% and 95% credible intervals of adult and yearling gray 
wolves in Montana from an integrated population model (IPM) from 2007-2015. Shaded areas 
represent years in which wolves were protected under the Endangered Species Act and not harvested. 



0.958) during years without harvest. Mean population growth rate for our study period was 1.02 (1.00 – 
1.04; Figure 2.6). We found that the correlation between population growth rate and survival (r = 0.31; 
Pr(r>0) = 0.86) and recruitment to 17 months of age (r = 0.23; Pr(r>0) = 0.79) was positive, whereas there 
was no correlation between population growth rate and recruitment to 5 months of age (r = 0.304; Pr(r>0) 
= 0.54). We also found a 
negative correlation between 
population growth rate and 
dispersal (r = -0.21; Pr(r<0) = 
0.61).  

Discussion 

Using available data from 
monitoring of wolves in 
Montana from 2007-2016, we 
found that recruitment was 
primarily affected by intrinsic 
factors such as population size 
and pack size. Both abundance 
and pack size appeared to 
affect recruitment of pups 
suggesting density dependent 
effects of population size and 
pack size, however these 
processes had opposite effects. 
The negative correlation of abundance with recruitment to 17 months of age suggests a negative density 
dependent effect. The positive correlation of pack size with recruitment of pups to 5 and 17 months of age 
indicates positive density dependence within a pack. Pack size was also the main factor driving breeding 
pair status of wolf packs in Montana (Mitchell et al. 2008). We also found that harvest affects recruitment 
of wolves. Although the credible interval contained 0 for the coefficient of harvest, there was a 
probability of 0.88 that harvest reduced recruitment to 17 months of age. Mean recruitment to 17 months 
of age in years without harvest was 3 wolves per pack, and in years with harvest was 2.2 wolves per pack. 
These estimates align closely with findings in Idaho (Ausband et al. 2015).  

Our estimates of recruitment and survival were comparable to other studies for wolves. Recruitment rate 
to 5 and 17 months varied over time (Figure 2.4). Recruitment estimates for wolves in Idaho averaged 3.2 
and 1.6 pups per pack to 15 months without harvest and with harvest, respectively (Ausband et al. 2015). 
Our estimates of recruitment to 17 months of age were similar to estimates in Idaho (3.00 and 2.20 wolves 
per pack, without and with harvest). Survival rate for wolves in the NRM prior to harvest implementation 
averaged 0.75 (Smith et al. 2010), which is slightly less than we estimated for wolves in Montana during 
years without harvest (0.78, Figure 2.5). Similarly, survival rate for wolves in an unharvested population 
in Wisconsin was 0.76 (Stenglein et al. 2015). Survival rates for wolves in harvested populations in 
Yukon and Alaska averaged 0.56 and 0.59, respectively (Ballard et al. 1987; Hayes and Harestad 2000), 
which is similar to our estimates for Montana during years with harvest (0.55, Figure 2.5). We found the 
greatest decline in survival during the hunting and trapping period in years with harvest, suggesting that 

 

Figure 2.6. Estimates of population growth rate and 66% and 95% credible intervals of 
wolves in Montana from an integrated population model (IPM) from 2007-2015. 
Shaded areas represent years in which wolves were protected under the Endangered 
Species Act and not harvested. 



harvest has decreased survival in yearling and adult wolves in Montana, however we did not explicitly 
test this.   

Our results indicate that recruitment does little to compensate for changes in survival, however the 
population has remained relatively stationary (mean population growth rate of 1.02). We found the 
correlation with population growth rate was greatest for annual survival of adults and yearlings followed 
by recruitment to 17 months of age. This suggests that these demographic rates have the strongest effect 
on population growth rate. Mean number of pups recruited to 17 months and survival of yearlings and 
adults decreased over time with changes in management practices (Figures 2.4 and 2.5), which is 
concurrent with declines in annual population growth rate (Figure 2.6). Estimated mean total human-
caused mortality, which includes harvest, control removals, and other (e.g., vehicle accident), in Montana 
was 0.28 (SD = 0.078) during our study and is near the top of the range of human-offtake thought to 
result in stable or growing populations (Fuller et al. 2003). We hypothesize that immigration into or local 
dispersal within Montana may partially compensate for decreased survival and recruitment. Immigration 
of wolves is an important process in dynamics for many wolf populations (Hayes and Harestad 2000; 
Fuller et al. 2003). Packs may adopt unrelated individuals which can maintain pack stability in harvested 
populations (Rutledge et al. 2010; Bassing et al. 2019), and recolonization of unoccupied territories may 
occur quickly (Ballard et al. 1987; Hayes and Harestad 2000). Dispersal rates are high for wolves across 
the Northern Rocky Mountains (Jimenez et al. 2017) and surrounding areas may supply immigrants for 
the Montana wolf population. Alternatively or in conjunction with immigration, reductions in dispersal 
may compensate for decreased survival and recruitment and allow the Montana wolf population to remain 
stationary. Adams et al. (2008) found that decreased dispersal rates compensated for harvest mortality and 
resulted in relatively stationary densities across years in north-central Alaska. 

2.4 Develop and Test a Component Model of Recruitment 

Introduction 

To understand variation in recruitment (offspring produced that survive to a given age), managers and 
researchers typically evaluate how different factors (e.g., predation or density dependence) affect the 
overall rate. Although recruitment is generally assessed by recruitment rate, i.e., number of offspring that 
survive to a certain age, it is affected by multiple demographic processes, and management decisions may 
differ depending on how factors affect the components of recruitment. Wolves breed cooperatively (i.e., 
non-breeding pack members help raise pups; Mech and Boitani 2003), and like many other cooperative 
breeders, they benefit from the presence of non-breeding individuals to help raise offspring (Solomon and 
French 1997). Although wolves reach sexual maturity around 2 years of age, the breeding pair suppresses 
reproduction in other pack members (Packard 2003), however some packs contain multiple breeding 
males and females (Ausband 2018). Recruitment in wolves is therefore a function of whether a pack 
successfully reproduced, the number of breeding females in a pack, litter size, and pup survival. 
Understanding how different factors affect the components of recruitment can better inform decisions 
when managing wildlife populations. For example, if increased breeder mortality is reducing the 
probability a pack successfully breeds, and consequently recruitment, management could alter the timing 
of the season so it does not coincide with breeding. Conversely, if low food availability is decreasing pup 
survival different management actions might be taken. 



Collecting data to estimate the components of recruitment, however, can be difficult. Data on litter size 
and early (<2 months) pup survival is invasive and challenging to collect given that wolf pups stay in the 
den for the first 2 months (Fuller et al. 2003; Mech and Boitani 2003). Further, without genetic data it is 
difficult to know how many breeding females were present, which can be costly to collect and analyze. 
Cost-effective methods to estimate or predict the components of recruitment are thus needed to support 
decisions on harvest management of wolves.  

Detailed recruitment data were unavailable in Montana, therefore we used data from Idaho (Ausband et 
al. 2017a, Ausband et al. 2018) to develop the empirical models of the components of recruitment to build 
a component model to predict recruitment. We evaluated predictions of the component model of 
recruitment for wolves in Montana by comparing predictions to observed pup counts. We hypothesized 
that the probability a pack reproduced was 1) constant, i.e., null model, 2) was positively related to pack 
size because wolves are cooperative breeders, 3) was negatively related to harvest because loss of a 
breeder can result in no reproduction (Brainerd et al. 2008; Borg et al. 2015), and 4) was related to both 
pack size and harvest. We hypothesized that litter size 1) would be positively related to prey availability 
because of increased food resources for the breeding female, 2) would be positively related to pack size 
due to either greater food availability from increased hunting efficiency (Schmidt and Mech 1997; 
MacNulty et al. 2011) or because larger packs may have experienced breeders which is positively related 
to litter size (Person and Russell 2009), 3) would be negatively related to population size due to density 
dependent resource availability, and 4) would have a compensatory response to harvest rate. We 
hypothesized that pup survival 1) would be positively related to prey availability due to increased food 
resources, and 2) would be negatively related to population size due to density dependent resource 
availability. We fitted models for multiple breeding females, litter size, and pup survival to the data from 
Idaho, however because the data were only for reproductive packs we developed models based on our 
hypotheses for the probability a pack reproduced. We used the top models for multiple breeding females, 
litter size, and pup survival and 4 models for the probability a pack reproduced (based on our hypotheses) 
to generate predictions of recruitment under the four component models. To test the component model, 
we generated predictions of recruitment for wolves in Montana and compared them to counts of the 
number of pups recruited from 2005-2010.  

Methods 

We used genetic pedigree data from reproductive wolf packs in Idaho from 2008-2016 (Ausband et al. 
2017a; Ausband 2018) to determine presence of multiple breeding females, litter size, and pup survival. 
Ausband et al. (2015) sampled known and predicted rendezvous sites, collected scat samples, extracted 
DNA using Qaigen stool kits (Qiagen Inc., Valencia, CA, USA), identified samples by individual and sex 
(Stenglein et al. 2010). Ausband et al. (2017), and then determined breeders and their offspring using 
pedigree analyses in COLONY v2.0.5.5 (Jones and Wang 2009). The resulting data included number of 
pups present at 3 months of age, number of pups present at 15 months of age, number of breeders, number 
of adults at 3 months of age, breeder male and female turnover, and number of adults at 15 months of age 
for 16 unique packs totaling in 55 unique pack-years (for more details see Ausband et al. 2010, 2015, 
2017a). Because sampling was focused on rendezvous sites packs that did not successfully reproduce 
were not included. 



We used litter size, pup survival, and presence of multiple breeding females as response variables. We 
treated the number of pups at 3 months of age as the litter size. Any mortality of pups younger than this 
would bias litter size low and pup survival high, however the litter sizes are similar to those reported 
elsewhere for wolves (Fuller et al. 2003). We considered pup survival as the number of pups at 3 months 
of age that were still alive at 15 months of age as Ausband et al. (2017a) did. Similarly to Ausband 
(2018), we treated the presence of > 1 breeding female as a binary variable to estimate the probability of 
a pack containing multiple breeding females. 

We included independent variables that represented prey availability, pack and population characteristics, 
and harvest. For the independent predictors of prey availability we used winter severity as an index for 
prey vulnerability (Mech and Peterson 2003; Mech and Fieberg 2015) and catch-per-unit-effort (CPUE) 
of antlered deer and elk as an index of prey abundance (Lancia et al. 1996). We used the average daily 
snow depth for the previous water year (October 1 – September 30 the following year) from SNOTEL 
(https://www.wcc.nrcs.usda.gov/snow/) for winter severity. We estimated CPUE for deer and elk in each 
game management unit as the number of harvested antlered deer or elk divided by the number of hunter 
days using harvest statistics from IDFG (idfg.idaho.gov). We used log transformed estimates of 
abundance of wolves from wolf monitoring by IDFG for population size (Nadeau et al. 2009; Mack et al. 
2010; Holyan et al. 2011; Idaho Department of Fish and Game and Nez Perce Tribe 2012, 2013, 2014, 
2015, Idaho Department of Fish and Game 2016, 2017) and the number of adults present when pups were 
3 months of age as independent predictors representing pack and population characteristics. We used a 
binary variable to represent years with and without harvest and also harvest rate as independent predictor 

Table 2.3. Candidate models and model selection for litter size (𝑃𝑃), pup survival (𝜙𝜙), and multiple breeding females (𝑚𝑚) 
for wolves in Idaho  from 2008-2016 using leave-one-out cross-validation information criteria (LOO) and mean and 
standard error of the difference in the expected log predictive density (∆ELPD). Independent variables included pack size 
(𝑃𝑃𝑆𝑆), abundance of wolves (𝑃𝑃𝑃𝑃), winter severity (𝑊𝑊𝑆𝑆), index of deer abundance (𝑆𝑆𝑅𝑅), elk index (𝐸𝐸), harvest as a binary 
variable (𝐻𝐻), harvest rate (𝐻𝐻𝑅𝑅), a random effect of pack (𝛼𝛼𝑝𝑝), and a random effect of year (𝜀𝜀𝑡𝑡). 

Demographic 
rate Model K LOO ∆LOO ∆ELPD (SE) 

Litter size 𝑃𝑃 = 𝛽𝛽0 + 𝛼𝛼𝑝𝑝 2 228.50 0 0 (0) 
 𝑃𝑃 = 𝛽𝛽0 + 𝑃𝑃𝑆𝑆 + 𝛼𝛼𝑝𝑝 3 229.35 0.85 0.43 (0.707) 
 𝑃𝑃 = 𝛽𝛽0 + 𝑆𝑆𝑅𝑅 + 𝛼𝛼𝑝𝑝 3 229.96 1.46 0.73 (0.394) 
 𝑃𝑃 = 𝛽𝛽0 + 𝑆𝑆𝑅𝑅 + 𝑃𝑃𝑆𝑆 + 𝛼𝛼𝑝𝑝 4 230.99 2.49 1.25 (0.923) 
 𝑃𝑃 = 𝛽𝛽0 + 𝐻𝐻𝑅𝑅 + 𝑃𝑃𝑃𝑃 + 𝐻𝐻𝑅𝑅 ∗ 𝑃𝑃𝑃𝑃 + 𝛼𝛼𝑝𝑝 5 232.11 3.61 1.81 (0.466) 

Pup Survival 𝜙𝜙 = 𝛽𝛽0 + 𝑆𝑆𝑅𝑅 + 𝑃𝑃𝑃𝑃 + 𝐻𝐻 + 𝛼𝛼𝑝𝑝 + 𝜀𝜀𝑡𝑡 6 177.55 0 0 (0) 
 𝜙𝜙 = 𝛽𝛽0 + 𝐻𝐻 + 𝛼𝛼𝑝𝑝 + 𝜀𝜀𝑡𝑡 4 177.57 0.02 0.01 (1.957) 
 𝜙𝜙 = 𝛽𝛽0 + 𝑆𝑆𝑅𝑅 + 𝐻𝐻 + 𝛼𝛼𝑝𝑝 + 𝜀𝜀𝑡𝑡 5 177.60 0.05 0.03 (0.675) 
 𝜙𝜙 = 𝛽𝛽0 + 𝑆𝑆𝑅𝑅 + 𝛼𝛼𝑝𝑝 + 𝜀𝜀𝑡𝑡 4 177.86 0.31 0.16 (0.998) 
 𝜙𝜙 = 𝛽𝛽0 + 𝑃𝑃𝑃𝑃 + 𝐻𝐻 + 𝛼𝛼𝑝𝑝 + 𝜀𝜀𝑡𝑡 5 178.23 0.68 0.34 (1.986) 
 𝜙𝜙 = 𝛽𝛽0 + 𝑆𝑆𝑅𝑅 + 𝑃𝑃𝑃𝑃 + 𝛼𝛼𝑝𝑝 + 𝜀𝜀𝑡𝑡 5 178.23 0.68 0.37 (1.070) 
 𝜙𝜙 = 𝛽𝛽0 + 𝑃𝑃𝑃𝑃 + 𝛼𝛼𝑝𝑝 + 𝜀𝜀𝑡𝑡 4 178.41 0.86 0.43 (2.180) 
 𝜙𝜙 = 𝛽𝛽0 + 𝛼𝛼𝑝𝑝 + 𝜀𝜀𝑡𝑡 3 179.45 1.90 0.95 (2.100) 
 𝜙𝜙 = 𝛽𝛽0 + 𝐻𝐻 + 𝑃𝑃𝑆𝑆 + 𝐻𝐻 ∗ 𝑃𝑃𝑆𝑆 + 𝛼𝛼𝑝𝑝 + 𝜀𝜀𝑡𝑡 6 180.70 3.15 1.58 (2.639) 

Multiple 
breeding 
females 

𝑚𝑚 = 𝛽𝛽0 + 𝑃𝑃𝑆𝑆 + 𝑊𝑊𝑆𝑆 + 𝑆𝑆𝑅𝑅 4 34.89 0 0 (0) 
𝑚𝑚 = 𝛽𝛽0 + 𝑊𝑊𝑆𝑆 + 𝑆𝑆𝑅𝑅 3 37.30 2.41 1.21 (1.881) 

𝑚𝑚 = 𝛽𝛽0 + 𝑃𝑃𝑆𝑆 2 42.42 7.53 3.76 (2.929) 
 𝑚𝑚 = 𝛽𝛽0 1 44.12 9.23 4.62 (3.126) 

 



variables. We estimated harvest rates for the population using abundance estimates from IDFG and 
reported harvest of wolves (idfg.idaho.gov).  

We fit generalized linear mixed-effects models for litter size (𝑃𝑃), pup survival (𝜙𝜙), and the probability of 
multiple breeding females (𝑚𝑚) with either Poisson or Bernoulli distribution. We included a random effect 
of pack and year to account for non-independence in litter count data and pup survival. We ran models 
based on our a priori hypotheses and on findings by Ausband et al. (2017a) and Ausband (2018). We 
considered every combination of prey availability, population and pack characteristics, and harvest which 
resulted in 4 competing models for litter size and multiple breeding females and 8 competing models for 
pup survival. Additionally, we considered a model representing the hypothesis of a compensatory 
response to harvest for litter size and a model for pup survival representing the hypothesis that pups in 
larger packs are more likely to survive. We tested for collinearity among covariates using the Pearson 
correlation coefficient and excluded collinear covariates within the same model (r > |0.60|; Zuur et al. 
2010) in constructing our final candidate models (Table 2.3). 

We fit models in a Bayesian framework using JAGS v4.2.0 (Plummer 2003) via the R2jags package (Su 
and Yajima 2015) in R v3.4.1 (R Core Team 2017). We ran 3 markov chains for 100,000 iterations with 
the first 50,000 discarded as a burn-in period and a thinning rate of 5. We continued to run an additional 
50,000 interactions until chains converged. We monitored convergence using visual inspection of the 
chains and the Gelman-Rubin diagnostic (Gelman and Rubin 1992). We compared models using 
approximate leave-one-out cross-validation score (LOO; Gabry et al. 2017; Vehtari et al. 2017) and the 
expected log predictive density (ELPD) using Pareto-smoothed importance-sampling in the loo package 
(Vehtari et al. 2019). We considered models competitive if the ∆ELPD of the top model was within the 
standard error of the ∆ELPD of the competing models. We assessed model fit using the expected log 
predictive density for all demographic rates, Bayesian p-values calculated from the 𝜒𝜒2-discrepancy 
statistic (Gelman et al. 2004) for litter size, and the receiver operating characteristic (ROC) statistic and 
the corresponding area under the curve (AUC; Hosmer and Lemeshow 2000) for pup survival and the 
probability of multiple breeding females. We calculated the probability a coefficient was greater than or 
less than 0 using the MCMC samples from the posterior distribution when the CRI overlapped 0. 

We combined results from multiple breeding females, litter size, and pup survival with hypotheses of 
whether a pack successfully reproduced to generate predictions of recruitment for wolf packs in Montana. 
Group counts of wolf packs were collected by MFWP biologists annually (Mech 1973; Gude et al. 2012; 
Coltrane et al. 2015; Inman et al. 2019). We used the end-of-year group counts for wolves in Montana 
that biologists considered of good quality (i.e., complete) and that included counts of pups. The data 
included 184 pack counts from 82 unique packs from 2005-2010. We used the average daily snow depth 
for the previous water year (October 1 – September 30 the following year) from SNOTEL 
(https://www.wcc.nrcs.usda.gov/snow/) for winter severity in Montana. We estimated CPUE for deer for 
each region the pack resided in as the number of harvested antlered deer divided by the number of hunter 
days using harvest statistics from MFWP (fwp.mt.gov). 

We used the most supported model for multiple breeding females, litter size, and pup survival to predict 
those components of recruitment for wolves in Montana. We used 4 hypotheses to generate predictions of 
the probability a pack reproduced: 1) null model with a mean probability, 2) the probability a pack 
reproduced increased monotonically with pack size, 3) mortality during the breeding season reduced the 



probability a pack reproduced 
due to breeder loss, and 4) pack 
size and mortality during the 
breeding season both affect the 
probability a pack reproduces 
(Figure 2.7). We generated 
predictions of recruitment 
under the 4 hypotheses for the 
probability a pack reproduced 
(𝑏𝑏) and the most supported 
models of multiple breeding 
females (𝑚𝑚), litter size (𝑃𝑃), and 
pup survival (𝜙𝜙) in a Bayesian 
hierarchical model. We 
assumed the probability a pack 
reproduced was a Bernoulli 
random variable and modeled 
the probability using a logit 
transformation. We used 
informative priors to represent 
our hypotheses of the probability a pack reproduced and tested the sensitivity of the results to these priors. 
We refit the most supported models for multiple breeding females, litter size, and pup survival and 
estimated recruitment (𝛾𝛾) as 𝛾𝛾 = 𝑏𝑏𝑃𝑃𝜙𝜙 + 𝑚𝑚𝑏𝑏𝑃𝑃𝜙𝜙 using the same procedures outlined above. We visually 
compared predictions of recruitment to observed recruitment in Montana.  

Results and Discussion 

All models for the probability a pack contains multiple breeding females converged with Gelman-Rubin 
statistics of <1.1 and had good mixing of chains. The top models for the probability of multiple breeding 
females included 1) prey availability (represented as winter severity and the index of deer abundance) and 
pack size, and 2) only prey availability (Table 2.3). Both models fitted the data well (all Pareto-k 
diagnostic values < 0.5; AUC ≥ 0.81). Multiple breeding females had a 0.97 probability of a positive 
relationship with the index of deer abundance (𝛽𝛽 = 38.02,𝐶𝐶𝑅𝑅𝐶𝐶 = −1.258− 79.446) and a positive 
relationship with winter severity (𝛽𝛽 = 0.28,𝐶𝐶𝑅𝑅𝐶𝐶 = 0.058 − 0.542; Figure 2.8). We found that multiple 
breeding females also had a positive correlation with pack size (𝛽𝛽 = 0.34,𝐶𝐶𝑅𝑅𝐶𝐶 = 0.043− 0.689). 

Overall, we found that the probability a pack contained multiple breeding females was positively related 
to prey availability. We found that winter severity and the index of deer abundance was positively related 
to the probability of multiple breeding females, suggesting that packs are more likely to contain > 1 
breeding female with greater prey availability. This is similar to the findings by Boertje and Stephenson 
(1992) that more females were reproductively active and had greater subcutaneous fat with greater 
ungulate biomass.  

All models for litter size converged with Gelman-Rubin statistics of <1.1 and had good mixing of chains. 
The top models for litter size included 1) only a random effect of pack which fitted the data marginally 

 

Figure 2.7. Hypothesized relationships between the probability a pack reproduced and 
pack size and harvest for gray wolves under 4 hypotheses: the null hypothesis (i.e., 
constant probability), the pack size hypothesis with a positive relationship between 
pack size and the probability a pack reproduced, the harvest hypothesis where harvest 
reduced the probability a pack reproduced, and the pack size + harvest hypothesis. 



well (p-value = 0.78; all Pareto-k diagnostic values < 0.5), and 2) only pack size which fitted the data well 
(p-value = 0.76; all Pareto-k diagnostic values < 0.7). Litter size had a 0.84 probability of a positive 
relationship with pack size (𝛽𝛽 = 0.03,𝐶𝐶𝑅𝑅𝐶𝐶 = −0.006− 0.069). We found little variation among packs 
for litter size (𝑆𝑆𝑆𝑆 𝑃𝑃𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻 = 0.12,𝐶𝐶𝑅𝑅𝐶𝐶 = 0.006− 0.318).  

Although we found support for our hypothesis that pack size was positively related to litter size, it was a 
small effect, and litter size was similarly explained by a mean litter size with slight variation among 
packs. In fact, litter size varies little in many canid species (Devenish-Nelson et al. 2013). This could 
indicate that biological limitations on reproduction in wolves allows for little variation in litter size. We 
did not find support for our hypotheses that prey availability or density was related to litter size. Boertje 
and Stephenson (1992) found that litter size declined with declines in ungulate biomass per wolf, however 
they only found declines in litter size when ungulate biomass per wolf was reduced below levels 
previously reported in the literature. Similarly, we did not find support for the hypothesis of a 
compensatory effect of harvest on litter size. Contrary to our results, Sidorovich et al. (2007) found that 
intensive harvest of wolves in Belarus increased litter size. The maximum reported density of wolves in 
Belarus during their study (36 wolves/1000 km2) was much greater than the maximum reported density of 
wolves in central Idaho (15 wolves/1000 km2; Bassing 2017), and therefore reproduction of wolves in 
Belarus may have been limited by available food resources. These results suggest that per capita prey 
availability may not be a limiting factor for reproduction of wolves in our study area. 

All models for pup survival converged with Gelman-Rubin statistics of <1.1 and had good mixing of 
chains. The top model for pup survival included prey availability (represented as the index of deer 
abundance), abundance, and harvest followed by the harvest only model (Table 2.3). There was 
considerable model selection uncertainty and all models were considered competitive (Table 2.3), 
however the models did not fit the data well (some Pareto-k diagnostic values > 0.7 for all models; AUC 
~ 0.76 for all models). Pup survival had 0.97 probability of a positive relationship with the index of deer 
abundance (𝛽𝛽 = 23.86,𝐶𝐶𝑅𝑅𝐶𝐶 = −1.209− 49.156) and a 0.76 probability of a positive relationship with 
wolf abundance (𝛽𝛽 = 2.43,𝐶𝐶𝑅𝑅𝐶𝐶 = −4.335− 7.920). We found a 0.93 probability that pup survival was 
less in years with harvest compared to years without harvest (𝛽𝛽 = −0.95,𝐶𝐶𝑅𝑅𝐶𝐶 = −2.307− 0.484). We 
found a 0.85 probability of a positive effective of pack size on pup survival (𝛽𝛽 = 0.07,𝐶𝐶𝑅𝑅𝐶𝐶 = −0.052 −
0.192) in the pack size only model. When we ran the interaction model with pack size and harvest we 
found a 0.70 probability of a negative effect of pack size on pup survival (𝛽𝛽 = −0.06,𝐶𝐶𝑅𝑅𝐶𝐶 = −0.274−
0.149) and a 0.91 probability that the interaction between harvest and pack size had a positive correlation 
with pup survival (𝛽𝛽 = 0.16,𝐶𝐶𝑅𝑅𝐶𝐶 = −0.075− 0.417), indicating that pups may have greater survival in 
larger packs during years with harvest. We found greater variation among packs (𝑆𝑆𝑆𝑆 𝑃𝑃𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻 =
1.22,𝐶𝐶𝑅𝑅𝐶𝐶 = 0.575− 2.227) than years (𝑆𝑆𝑆𝑆 𝑃𝑃𝑜𝑜 𝑦𝑦𝑆𝑆𝑃𝑃𝐻𝐻𝐻𝐻 = 0.55,𝐶𝐶𝑅𝑅𝐶𝐶 = 0.039− 1.521) for pup survival.  

We found greater variation in pup survival among packs than among years, suggesting that pack 
characteristics or spatial variation in food resources may be more important than temporal variation in 
food resources. For species that cooperatively breed, changes in group composition (number in different 
sex or age classes) can greatly affect recruitment (Whitman et al. 2004; Brainerd et al. 2008; Gobush et al. 
2008; Ausband et al. 2017a). Loss or turnover of breeding males and females (Brainerd et al. 2008; 
Ausband et al. 2017b) and the number of non-breeding males and females can affect pup survival 
(Ausband et al. 2017a) and may explain the large variation among packs and marginal predictive ability 



of the models of wolf survival. Although pup survival is affected by pack composition and breeder 
turnover (Ausband et al. 2017a; b), data on group composition and breeder fate are difficult to collect. 
Including those factors in a model would limit the ability of the model to predict recruitment only when 
those data were available. 

For wolves in Montana, we predicted the mean probability a pack contained > 1 breeding female was 0.02 
(SD = 0.012) for a pack of 5 and 0.07 (SD = 0.052) for a pack of 10 wolves. Based on the top model, we 
predicted a mean litter size of 4.31 (SD = 0.046). We predicted mean pup survival to be 0.59 (SD = 
0.023) during years without harvest and 0.43 (SD = 0.016) during years with harvest. Based on these 
components, we predicted recruitment for a pack of 5 wolves to be 2.83 (SD = 0.562) and 1.91 (SD = 
0.419) pups per pack during years without and with harvest, respectively, under the null hypotheses for 
the probability a pack reproduced. 

Predictions of recruitment based on these models for packs in Montana were similar to observed 
recruitment (Figure 2.8). The null hypothesis for the probability a pack reproduced provided the best 
predictions of recruitment and the hypothesis for pack size and harvest effects performed worst (Figure 
2.8, Figure 2.9). We found that 62% of all predictions fell within the 66% CRI and 71% of predictions fell 
within the 95% CRI under the null hypothesis. We found that 16% of observations exceeded the 95% CRI 
under the null model, and for all models 13% of observations were less than the 95% CRI. All predictions 

 

Figure 2.8. Component model predictions of recruitment (wolves per pack) in gray wolf packs from Montana (2005-2010) 
compared to observed recruitment (X) under 4 hypotheses of the probability a pack reproduced: 1) the null hypothesis was a 
constant probability, 2) the pack size hypothesis was increased probability with increasing pack size, 3) the harvest hypothesis 
was a greater probability during years without harvest, and 4) the pack size and harvest hypothesis combined the 2 previous 
hypotheses. Predictions are displayed by the 50%, 66%, 80%, and 95% credible intervals. Overlap between the observed data 
and prediction interval indicates an accurate prediction. 



of recruitment were more accurate during years without harvest than with harvest (Figure 2.9). During 
years with harvest, the null model did best at predicting recruitment, with 72% of observations falling 
within the 95% CRI of the predictions. Predictions of recruitment appeared to be biased low during years 
of harvest under all hypotheses (Figure 2.9). During years without harvest, we found that the null 
hypothesis best predicted recruitment rate, and 71% of observations were within the 95% CRI.    

Generally, the component model predicted recruitment well for wolves in Montana. For our model that 
had a constant probability a pack successfully reproduced, prediction intervals for recruitment contained 
> 70% of the observed recruitment values. Our predictions for each pack were not biased high or low, and 
the number of packs for which we predicted higher or lower recruitment were equivalent (Figure 2.8). 
Our predictions of recruitment during the year with harvest (2009), however, appeared to be biased low, 
with observed recruitment exceeding most predictions (Figure 2.9). This may suggest that our hypotheses 
for the effects of harvest on the probability a pack reproduced are unsupported, however there was little 
improvement in predictions of recruitment under the null hypothesis during years with harvest. The 
harvest rate was low in Montana in 2009 (72 harvested, ~ 9% harvest rate), and it may be that our 
predictions of pup survival were biased low because the model was developed for wolves in Idaho during 
years with much greater harvest rates (Ausband 2016). Future predictions could be improved by including 
harvest as a rate instead of as a binary variable and modeling natural survival rate. To fully test 
predictions of this component model, data on which packs reproduced, litter size, the number of breeding 
females, and pup survival are needed.  

Estimating recruitment of a low density, elusive species can be difficult for the agency responsible for 
management, however this component model may be a viable option to predict recruitment of wolves. 
The data required to generate predictions are readily available in most circumstances: deer CPUE, snow 

 

Figure 2.9. Component model predictions of recruitment (wolves per pack) in gray wolf packs from Montana based on pack 
size and harvest  (2005-2010) compared to observed recruitment (X) under 4 hypotheses of the probability a pack reproduced: 1) 
the null hypothesis was a constant probability, 2) the pack size hypothesis was increased probability with increasing pack size, 
3) the harvest hypothesis was a greater probability during years without harvest, and 4) the pack size and harvest hypothesis 
combined the 2 previous hypotheses. Predictions are displayed by the 50%, 66%, 80%, and 95% credible intervals. Overlap 
between the observed data and prediction interval indicates an accurate prediction. 



depth, pack size, and whether or not the population was harvested. In instances were pack sizes are not 
known for all packs, an estimate of mean pack size and variance could be used to impute missing pack 
sizes and account for uncertainty. Because the component model focuses on individual components, one 
component could be updated while retaining the others to generate predictions. For example, if new data 
on pup survival become available, managers could update that portion of the model to generate 
predictions of recruitment. Further, litter size varied little and the probability a pack contained multiple 
breeding females was low, therefore managers wishing to alter recruitment may have more success when 
targeting successful reproduction and pup survival.  
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OBJECTIVE 3: DEVELOP ADAPTIVE HARVEST MANAGEMENT FRAMEWORK—Allison 
Keever, Project 2 

ABSTRACT:  Adaptive management (AM) incorporates scientific information and associated 
uncertainty in a transparent process that relates alternative management actions to explicit, quantifiable 
objectives to guide decisions making. Designing an AM framework requires clearly defined objectives, 
alternative management actions, predictive models to determine consequences of actions, an optimization 
algorithm to determine the management actions that best meets objectives, and monitoring data to 
determine the current system state and facilitate learning. Through monitoring, uncertainty can be reduced 
over time to improve future decisions. We developed an AM framework as a tool to guide decisions for 
harvest regulations for gray wolves in Montana. Our objectives were to 1) develop the AM framework for 
wolves to provide a decision tool to MFWP, 2) determine optimal management actions given how we 
quantified the components of AM, and 3) implement AM as an example of how this tool could work 
moving forward. As an example of the use of this AM framework, we used stochastic dynamic 
programing and passive adaptive learning to determine optimal management actions, given objectives and 
uncertainty about wolf population dynamics. The uncertainty we considered was whether immigration 
into Montana was partially compensating for harvest. We used the fundamental objectives developed for 
wolf management in 2010 that have been used as part of every season-setting process: 1) maintain 
positive and effective working relationships with livestock producers, hunters, and other stakeholders, 2) 
reduce wolf impacts on big game populations, 3) reduce wolf impacts on livestock, 4) maintain hunter 
opportunity for ungulates, 5) maintain a viable and connected wolf population in Montana, 6) maintain 
hunter opportunity for wolves, and 7) increase broad public acceptance of harvest and hunter opportunity 
as part of wolf conservation. We incorporated epistemic uncertainty in parameter values used in the 
predictive models, and also uncertainty in the relationship between regulations and harvest. Using AM, 
we found support for the hypothesis that net immigration into Montana was positive. This suggests that 
immigration may help the Montana wolf population sustain greater harvest rates than what could be 
expected in absence of immigration. We provide an example of how this decision tool could be 
implemented, and a flexible framework and tool that can be updated and adapted as uncertainty is 
reduced.   

3.1 Introduction 

Harvest is an important management tool for gray wolves in Montana. Harvest regulations for wolves are 
evaluated biennially and can be updated as needed, depending on the status of the population and 
objectives for management. Decisions on harvest regulations for wolves can be challenging, however, due 
to conflicting objectives from various stakeholder groups and uncertainties in the effects of harvest on 
wolf population dynamics. 

Conflicting opinions on values of wolves and management among stakeholders (including livestock 
producers, hunters, tourists, and wolf conservation groups) make management decisions difficult. Federal 
and state agencies have legal requirements to manage the wolf population, and the Commission-approved 
Montana Wolf Conservation Strategy stipulates that MFWP will maintain a minimum of 15 breeding 
pairs and 150 wolves to have a regulated, public harvest season. Ungulate hunters have concerns that 
wolves affect prey populations and compete with hunters for ungulates (Ericsson and Heberlein 2003). 



Livestock producers can suffer losses due to depredation events. Wolves also benefit the tourism industry 
in some areas (e.g., visitors to National Parks to view wolves), and conservation groups use that 
information to demonstrate the economic benefit of wolves (Defenders of Wildlife 2013).  

A further challenge in managing wolves is uncertainty in effects of harvest on population dynamics. First, 
managers cannot directly control harvest rate, because changes in harvest regulations do not directly 
change harvest rates (Bischof et al. 2012). For example, increasing the bag limit from 1 to 5 wolves does 
not mean that harvest rate would increase five-fold, or even at all. Harvest rates vary based on many 
factors, including weather, hunter and trapper effort, hunter and trapper success, and regulations. Second, 
there is uncertainty in the effects of harvest on demography. There is not consensus for how harvest 
affects wolves (Fuller et al. 2003; Adams et al. 2008; Creel and Rotella 2010; Gude et al. 2012). 
Substantial variation occurs in the reported level of harvest wolf populations can sustain before growth 
rate decreases (Fuller et al. 2003; Adams et al. 2008; Creel and Rotella 2010; Gude et al. 2012) which 
could result in management actions not reaching objectives.  

Despite uncertainty in the effects of harvest and the conflicting objectives and values of stakeholders 
MFWP must still make recommendations for harvest regulations of wolves, and the Montana Fish and 
Wildlife Commission still must set wolf harvest regulations. This reality creates annual controversy over 
wolf harvest regulations. A formal decision analysis process may help alleviate some of the technical 
aspects of this controversy by unifying expectations of stakeholders with divergent viewpoints. 

Adaptive management (AM) provides a framework to clarify decisions while reducing uncertainty to 
identify the optimal strategies to 
meet objectives (Walters 1986, 
Williams et al. 2009). AM is an 
extension of structured decision 
making (SDM; Hammond et al. 
1999) when decisions are iterated 
over time or space and 
uncertainty affects choices among 
management alternatives . Much 
like SDM, AM requires clearly 
defined objectives, alternative 
management actions, and models 
to predict outcomes of actions 
and evaluate tradeoffs. An 
essential component to AM is a 
monitoring program to determine 
the system state (e.g., population 
size), reduce uncertainty, and 
learn over time. Learning is the 
reduction of uncertainty and 
occurs when there are multiple 
hypotheses about how a system 
works, represented as multiple 

 

Figure 3.1. Adaptive harvest management cycle. The optimal state-dependent (i.e., 
population size dependent) harvest strategy is based on objectives, alternatives, 
population models encompassing key uncertainties, and their relative support. After 
management is enacted, the response of the population is monitored and compared to 
predictions from the population models. Based on comparisons, model support is 
updated and uncertainty reduced.  

 

 



models each with an associated probability (weight) representing the amount of support for that model 
(hypothesis) representing system dynamics. These model probabilities can be updated by comparing 
model predictions to monitoring data and provide evidence in favor of each hypothesis. When a 
hypothesis gains support, its model weight is increased and uncertainty is reduced, and the updated model 
weights can be used to make predictions. There are 2 forms of learning in AM, passive and active. The 
main difference between passive and active AM is that learning is anticipated and accounted for in active 
AM (Williams et al. 2002; Conroy and Peterson 2013). Active AM takes into account how reduction of 
uncertainty affects meeting objectives long-term. In passive AM, the optimal management action is 
selected assuming uncertainty will not change, and learning is incorporated outside of the optimization 
algorithm. In both passive and active AM, however, future decisions can be improved as models weights 
are updated and the accuracy of predictions improves. An AM framework can help guide harvest 
regulation decisions for wolf management while reducing uncertainty in wolf population dynamics to 
improve future decisions. 

To address the challenges associated with managing wolves in Montana we will develop an AM 
framework. AM follows a general cycle: 1) Determine optimal harvest strategies dependent on objectives, 
alternatives, current status of the population, and the competing models (hypotheses) and their associated 
model probabilities, 2) enact a harvest strategy, 3) monitor changes in population size, and 4) compare 
monitoring data to model predictions to update model probabilities. The cycle then continues again 
(Figure 3.1). An AM framework for wolves will help inform current decisions while reducing uncertainty 
in the effects of harvest to improve future decisions. Specifically, our objectives were to 1) collaborate 
with MFWP to determine objectives (Sect. 3.2), 2) evaluate the relationship between harvest regulations 
and number harvested to predict harvest under alternative management actions (Sect. 3.3), and 3) 
determine optimal harvest regulations given abundance of wolves to meet objectives (Sect. 3.4). This 
research is still in development, and all results presented here represents progress to date.    

3.2 Objectives 

Introduction 

Objectives are the desired outcomes from management of a system or population, and are used to measure 
whether management was successful (Conroy and Peterson 2013). Consequently, everything that follows 
in AM is largely determined by the objectives. Objectives should be quantifiable so they can be predicted 
and measured, and the metrics used to measure an objective are similarly important. Objectives should 
also reflect the values of stakeholders, and therefore stakeholders should be involved in the process of 
identifying objectives (Conroy and Peterson 2013). 

Objectives for wolf management in Montana were developed by MFWP representatives, including 
regional managers, biologists, and wolf specialists, during workshops in 2009-2010 (Runge et al. 2013). 
The working group focused on including objectives of the different stakeholders, and developed a set of 6 
fundamental objectives, 2 process objectives, and 2 strategic objectives (Runge et al. 2013 pg. 66). These 
objectives have guided management decisions for wolves since 2010 and were adopted by the Montana 
Fish and Wildlife Commission as part of every public harvest season. Although the 2010 SDM workshop 
provided objectives for management, formal, mathematical models relating changes in harvest regulations 



to how well those regulations met objectives were only developed for the objective related to the effects 
of harvest on wolf population size.  

Our objective was to 1) determine if these objectives still describe what is most important for wolf 
management in Montana, and 2) work with MFWP representatives to develop quantitative, mathematical 
functions for the objectives. We used the original objectives, and only evaluated the fundamental 
objectives. This is because process objectives determine how the decision is made but are not used to 
differentiate between alternative management actions, and strategic objectives, which are often associated 
with the mission of the managing agency, are typically beyond the scope of management decisions and 
thus do not help differentiate between alternative management actions (Runge et al. 2013). Therefore, we 
did not include the original objectives to 1) enhance open and effective communication to better inform 
decisions, 2) learn and improve as we go, and 3) gain and maintain authority for the state of Montana to 
manage wolves. We did, however, include 1 strategic objective that was previously deemed critical to the 
decision along with the fundamental objectives  (Runge et al. 2013 pg. 66):  

1. Maintain positive and effective working relationships with livestock producers, hunters, and other 
stakeholders 

2. Reduce wolf impacts on big game populations 
3. Reduce wolf impacts on livestock 
4. Maintain hunter opportunity for ungulates 
5. Maintain a viable and connected wolf population in Montana 
6. Maintain hunter opportunity for wolves 
7. Increase broad public acceptance of harvest and hunter opportunity as part of wolf conservation  

Methods 

To determine if these objectives describe what is most important for wolf management in Montana, we 
met with MFWP supervisors, wildlife managers, wolf specialists, and regional biologists September 2018 
through January 2019 (Table 3.1). We asked attendees whether stated objectives captured what was 
important for wolf management and were still relevant. We documented opinions and revisions of 
existing objectives and documented new objectives.  

To develop quantitative, 
mathematical functions that 
determine how well an 
objective was met we had to 
conduct multiple steps. 
When there are multiple 
objectives, the values for 
each objective must be 
combined into a single value 
using a reward (or objective) 
function to determine how 
well a management action 
meets all objectives (Conroy 

Table 3.1. Dates, locations, and attendees for each of the regional meetings to discuss 
objectives and alternative actions for wolf management.  

Region Date Location Attendees 
Region 1 11/2/18 Kalispell, MT N. Anderson, D. Boyd, T. Their, T. 

Manley  
Region 2 10/18/18 Missoula, MT M. Thompson, B. Jimenez, E. Bradley, 

T. Parks, J. SunderRaj, R. Mowry, S. 
Eggeman 

Region 3 10/29/18 Bozeman, MT H. Berk and B. Inman 
Region 4 9/26/18 Great Falls, MT G. Taylor, B. Lonner, R. Rauscher, and 

T. Smucker 
Region 5 1/8/19 Billings, MT A. Nelson, M. O’Reilly, A. Taylor, B. 

Beck, S. Stewart, T. Smucker, J. Paugh, 
and K. Kembel 

Region 6 9/27/18 Glasgow, MT S. Thompson and M. Sullivan 
 



and Peterson 2013). When the objectives are measured in different units (e.g., number of animals and 
dollars), the values for each objective must first be converted into common units using utility functions. 
In order to evaluate how well management actions met objectives listed above, we converted the values of 
each objective into a common metric using utility functions and then combined the utility values into a 
single value using a reward function that took into account the weights (relative importance) of each 
objective. We elicited utility functions and weights for objectives from MFWP representatives, which 
included supervisors, wildlife managers, and wolf specialists) to incorporate their values and knowledge. 
We also determined their risk attitudes as either risk averse, risk neutral, or risk tolerant (Conroy and 
Peterson 2013). For the reward function, we used the weighted-sum method (Conroy and Peterson 2013) 
to combine the utility values into a single reward value as:   

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑖𝑖𝑈𝑈𝑖𝑖 + ⋯𝑅𝑅𝐼𝐼𝑈𝑈𝐼𝐼, 

where 𝑅𝑅𝑖𝑖 is the weight and 𝑈𝑈𝑖𝑖 the utility value for objective i. We elicited utility functions and weights of 
objectives from MFWP representatives, including wildlife managers and wolf specialists, via email.  

Objectives and Metrics Used for AM 

The objectives that were developed in 2010 appear to still capture what is most important for wolf 
management and what is perceived to be important to the various stakeholders. Overall, MFWP 
representatives in the different regions believed the objectives developed in 2010 for wolf management 
were still appropriate. Minor edits/rewording and the addition of a few objectives were suggested. 
Because there were only minor edits, we used the originally stated objectives for the AM framework.  

Weights for objectives that were evaluated were averaged from the responses by MFWP representatives 
from the email survey (Table 3.2).  We described the metrics, utility functions, and risk attitude we used 
for each objective that was evaluated below and describe why 2 of the 7 objectives were not evaluated. 

Reduce impacts of wolves on big game populations 

Wolf impacts on big game populations are specific to local areas occupied by big game populations, 
which operate at a smaller scale than wolf populations, and dependent on many ecological factors. 
Considerable care needs to be taken in constructing a measurable attribute to reflect the process of wolf-
ungulate dynamics. To simplify matters, we measured the impact of wolves on ungulates using a 
constructed scale from 0 (no impact) to 1 (wolves are reducing ungulate populations) across the entire 
state. For simplicity, we asked interviewees to assume that the impact of wolves on big game populations 
was only a function of the statewide number of wolves, and that the maximum impact (scale value of 1) 

Table 3.2. Objectives, measurable attributes, and objective weights (relative importance) for an adaptive management 
framework for gray wolves in Montana. Objectives were developed in 2010 as part of a structured decision making 
workshop (Runge et al. 2013) and weights were assigned by MFWP representatives which included supervisors, wildlife 
managers, and wolf specialists.  

Objective Measureable Attribute Weight 
Reduce wolf impacts on big game populations Scale: 0 (no impact) – 1 (reducing populations) 0.246 
Reduce wolf impacts on livestock # depredation events/year 0.205 
Maintain viable and connected wolf population # wolves and pups recruited 0.255 
Maintain hunter opportunity for wolves # wolves, season length, bag limit 0.183 
Increase acceptance of wolf harvest and opportunity Percent Montanans satisfied with regulations 0.111 

 



was that wolves were reducing 
big game populations. We 
assumed if there were no wolves, 
then there was no impact on 
ungulates (value of 0). Second, 
we assumed that an increase in 
the statewide wolf population 
was associated with a greater 
impact on ungulates at the 
statewide scale. We asked 
interviewees to specify the shape 
of the relationship between the 
statewide wolf population size 
and the impact on ungulates. For 
the utility function, the most 
frequently selected risk attitude 
was risk tolerant, i.e., a line that 
decreases at an increasing rate 
(Figure 3.2A).  

Reduce impacts of wolves on 
livestock 

The metric we used for the 
objective to reduce wolf impacts 
on livestock was the number of 
depredation events each year. We 
estimated the number of 

depredation events per year using the mean and variance of the per-wolf depredation rates for before and 
after harvest reported in DeCesare et al. (2018) and wolf population size. We assumed that 0 depredation 
events had a utility value of 1 and an increase in the number of depredation events was associated with 
smaller utility values. MFWP representatives most frequently selected a risk tolerant attitude (Figure 
3.2B). 

Maintain hunter opportunity for ungulates 

We did not consider a utility function for maintaining hunter opportunity for ungulates. Maintaining 
hunter opportunity for big game species is integral to MFWP’s mission for providing opportunity for 
public enjoyment and honoring the tradition and heritage of hunting as part of Montana’s culture 
(mfwp.gov). However, we assumed the main effect of wolves on maintaining hunter opportunity for 
ungulates was through an impact on ungulate populations. Wolves likely had little effect on other factors 
associated with maintaining hunter opportunity for ungulates, such as public access, and therefore would 
likely not be influenced by decisions for wolf harvest regulations. Therefore, we assumed that reducing 
impacts of wolves on ungulates would maintain sufficient hunter opportunity with how management of 
wolves affect ungulate populations. If decisions for wolf harvest regulations can influence hunter 

 

Figure 3.2. Utility functions elicited from MFWP representatives representing the 
relationship between A) wolf population size and the utility for reducing impacts of 
wolves on ungulates, and B) the number of depredation events and the utility for 
reducing impacts of wolves on livestock. Utilities are standardized from 0 (worst) to 
1 (best). MFWP representatives included wildlife supervisors, managers, and wolf 
specialists.   

 

 



opportunity for ungulates beyond 
a reduction in big game 
populations, then a metric could 
be developed for this objective to 
include in the AM framework. 

Maintain a viable wolf 
population 

We measured maintaining a 
viable and connected wolf 
population by the number of 
wolves and pups recruited. We 
assumed that 1) if there were 
fewer than 150 wolves or 30 pups 
recruited, representing the 
minimum state plan threshold of 
150 wolves and 15 breeding 
pairs, then the utility value was 0, 
and 2) an increase in the number 
of wolves or pups recruited was 
associated with greater utility 
values. We created a utility 
function for wolf abundance and recruitment, then combined them by multiplying the utility values 
together. Therefore, if either abundance of wolves or the number of pups recruited was below the required 
minimum then the combined utility value was 0. MFWP representatives were risk averse for abundance 
and risk neutral for recruitment (Figure 3.3). 

Maintain hunter opportunity for wolves 

We used abundance of wolves, bag limit, and hunting and trapping season lengths to construct a utility 
function representing hunter opportunity for wolves. We assumed if abundance of wolves or the number 
of pups that were recruited fell below the required minimum then there was no hunter opportunity and the 
utility value was 0. We also assumed that an increase in abundance of wolves was associated with an 
increase in hunter opportunity. To convert from abundance to utilities, MFWP representatives were risk 
tolerant. We assumed that the utility value for hunter opportunity increased linearly for bag limit and 
season length, then combined the components by multiplying the utility values for abundance, bag limit, 
and season length together. 

Increase public acceptance of wolf harvest 

We used the percent Montanans satisfied with harvest regulations as the metric for acceptance of wolf 
harvest. We used survey data to predict the percent Montanans satisfied with regulations from hunting 
season length, trapping season length, and bag limit (Lewis et al. 2012, 2018). Survey data were 
categorized as resident private landowners, resident wolf hunting license holders, resident deer/elk license 

 

Figure 3.3. Utility functions elicited from MFWP representatives representing the 
relationship between A) wolf population size and the utility for maintaining a viable 
wolf population, and B) the number of pups recruited and the utility for maintaining 
a viable wolf population. Utilities are standardized from 0 (worst) to 1 (best). MFWP 
representatives included wildlife supervisors, managers, and wolf specialists.     

 

 



holders, and general household (Lewis et al. 2018). We developed utility functions for satisfaction with 
hunting season length, trapping season length, and bag limit separately for the 4 stakeholder groups. 
Survey data included 1) the percent of respondents that thought the season or bag limit was too short/low, 
suggesting they would be more satisfied with a longer/greater season or bag limit and thus a positive 
relationship with season length or bag limit, and 2) the percent of respondents that thought the season or 
bag limit was too long/high, suggesting they would be more satisfied with a shorter/smaller season or bag 
limit and thus a decreasing line. We used these relationships to convert the percent Montanans satisfied 
with hunting season length, trapping season length, and bag limits into utility values for each respondent 
group. To create the utility function we assumed that 1) if no Montanans were satisfied with the 
regulations (0%), then the utility value was 0, and 2) an increase in the percent of Montanans satisfied 
was associated with an increase in utility values. MFWP was risk neutral, therefore we used a linear 
relationship between percent Montanans satisfied and utility (Figure 3.4A). For each regulation (e.g., 

hunting season length) and survey group (e.g., private landowner), we combined the utility values for the 
increasing and decreasing lines using the negative squared-error loss function (Figure 3.4A). The negative 
squared-error loss function had small values when the utility for the increasing and decreasing lines were 
far apart and large values when the utility values were equal (i.e., the percent Montanans that thought the 
season was too long and too short were equal). Therefore, the negative squared-error loss function 
balances the competing interests of the respondents that want a shorter or longer season.  We then 
combined the utility values of the 4 survey groups for each regulation type by multiplying them together 
(Figure 3.4). To combine the 3 regulation types we used a weighted-sum with equal weights (i.e., 1/3).  

 

Figure 3.4. Utility functions elicited from MFWP representatives representing the relationship between B) hunting season 
length, C) trapping season length, and D) bag limit and the utility for increasing acceptance of harvest and hunting opportunity 
for wolves. Figure A demonstrates how utility functions were created from the percent Montanans that thought the season was 
too long and would be more satisfied with a shorter season and the percent Montanans that thought the season was too short and 
would be more satisfied with a longer season. They were combined using a negative squared-loss error function. Utilities are 
standardized from 0 (worst) to 1 (best). 



Maintain positive working relationships 

We did not consider a utility function for maintaining positive working relationships with stakeholders 
because we assumed that increasing acceptance of wolf harvest would also be positively related to 
positive relationships with stakeholders. Further, maintaining positive working relationships may require 
alternative management actions outside of harvest regulations that we did not consider.  

3.3 Harvest and Alternative Management Actions 

Introduction 

Management actions are a set of discrete decision alternatives that can be enacted to meet objectives. The 
decision problem is to select the management action that is expected to best meet objectives. However, 
oftentimes we do not have complete control over the management actions because they can be influenced 
by other factors (Bischof et al. 2012; Conroy and Peterson 2013). This is known as partial controllability, 
and when developing an AM framework, this type of uncertainty is important to consider and incorporate. 
Managers cannot directly control harvest rate of wolves, because changes in harvest regulations do not 
necessarily change harvest rates (Bischof et al. 2012). Harvest rates for wolves can vary based on many 
factors, including weather, hunter and trapper effort, hunter and trapper success, regulations, and prey 
availability (Kapfer and Potts 2012).  

Our objectives were to 1) evaluate effects of harvest regulations, social, and environmental/ecological 
factors on harvest of wolves, 2) determine patterns in variation of harvest, and 3) develop models to 
predict harvest under alternative sets of management regulations for use in an adaptive harvest 
management framework. For regulations, we considered season length, method type, and bag limit. For 
social factors, we considered number of days spent hunting by deer and elk hunters and the number of 
wolf tags sold. We included number of days spent hunting by deer and elk hunters because wolves are 
often harvested opportunisitically by deer/elk hunters. Last, we considered snow depth, snow water 
equivalent, and wolf density as environmental/ecological factors. We developed models for both hunting 
and trapping separately because we hypothesized factors would have different effects on those types of 
harvest. Further, because there was little variation in season length we evaluated patterns in the proportion 
of total annual harvest by week. We expected that the type of season (i.e., archery, general, trapping, and 
post trapping), the calendar week, and the hunting season week could be correlated with the proportion of 
wolves hunted or trapped each week.   

Methods 

We used the annual reported harvest from hunting and trapping (fwp.mt.gov) for the state for license 
years 2011-2017 to determine the number of wolves hunted and trapped each year. We took the reported 
number of wolves harvested from hunting and trapping each week (beginning on Monday) and divided by 
the total number of wolves hunted or trapped that license year to determine the proportion of wolves 
hunted or trapped by week.  

We used reported regulations from MFWP (fwp.mt.gov) to determine independent variables related to 
hunting regulations. We determined season length and bag limit for each year based on the Montana 
hunting and trapping regulations for wolves. Hunting season lengths included the archery and general 



seasons. We used the maximum annual bag limit for statewide harvest rate analyses although a bag limit 
of 1 was implemented in 3 of the 18 wolf management units (WMU). To evaluate the effects of hunting 
method on harvest we used reported weapon of harvest to classify method of harvest as either 
firearm/crossbow or archery. We determined the number of wolves harvested separately for the 2 method 
types for each year and included method as an independent predictor variable. We used reported hunting 
statistics from MFWP (fwp.mt.gov) to determine number of days spent hunting by deer and elk hunters 
and the reported wolf licenses sold for each year. We calculated snow depth and snow water equivalent 
(i.e., water content of snow; SWE) for each year reported from SNOTEL 
(https://www.wcc.nrcs.usda.gov/snow/). Additionally, we used the log transformed reported annual 
estimates of abundance as an index for wolf density (MFWP 2018). 

We used generalized linear mixed-effects models to determine relationships between harvest regulations, 
social factors, and environmental/ecological and the number of wolves hunted and trapped. We modeled 
the linear predictor for year 𝑡𝑡 with fixed and random effects using a log link function as 𝑙𝑙𝑙𝑙𝑙𝑙(𝜇𝜇𝑡𝑡) = 𝛽𝛽0 +
𝛽𝛽1𝑋𝑋1 + ⋯𝛽𝛽𝑘𝑘𝑋𝑋𝑘𝑘 + 𝛼𝛼𝑡𝑡 for independent predictor variables 𝑋𝑋𝑖𝑖 for 𝑖𝑖 = 1 to 𝐾𝐾. We then modeled the number 
of wolves harvested (𝑦𝑦𝑡𝑡) with a negative binomial error structure as 

𝑦𝑦𝑡𝑡~𝑁𝑁𝑅𝑅𝑙𝑙𝑅𝑅𝑡𝑡𝑖𝑖𝑁𝑁𝑅𝑅𝑁𝑁𝑖𝑖𝑁𝑁𝑙𝑙𝑁𝑁𝑖𝑖𝑅𝑅𝑙𝑙 �
𝑅𝑅

𝑅𝑅 + 𝜇𝜇𝑡𝑡
, 𝑅𝑅� 

where 𝑅𝑅 is the overdispersion parameter. We tested a random effect of year (𝛼𝛼𝑡𝑡) that was modeled using a 
normal distribution with mean 0 and an estimated variance parameter. We constructed 7 a priori 
candidate models (Table 3.3). We did not include season length for trapping because there was no 
variation in season length.   
Table 3.3. Model selection results for generalized linear mixed-effects models for the number of wolves hunted or trapped in 
Montana from 2011-2018. Independent predictor variables included season length (SL), method type (archery or firearm/crossbow), 
bag limit (bag), the number of wolf tags sold (tags), total number of days spent hunting by deer and elk hunters (elk), wolf density 
in wolves/1000 km2 (dens), daily average snow water equivalent (SWE), and daily average snow depth (SD) for the following water 
year. Models were compared using the difference in leave-one-out cross-validation information criteria (∆LOO), mean and standard 
error of the difference in the expected log predictive density (∆ELPD), and the deviance information criterion (DIC). Models in 
bold were considered competitive. 

Harvest Type Model K* ∆LOO ∆ELPD (SE) DIC (pD) 

Trapping 

𝜷𝜷𝟎𝟎 2 0 0 49 (1.9) 
𝛽𝛽0 + 𝑏𝑏𝑅𝑅𝑙𝑙 3 2.31 1.15 (0.995) 52 (3.4) 
𝛽𝛽0 + 𝑡𝑡𝑅𝑅𝑙𝑙𝑡𝑡 3 2.5 1.25 (0.813) 53 (3.5) 

𝛽𝛽0 + 𝑅𝑅𝑅𝑅𝑁𝑁𝑡𝑡 + 𝑆𝑆𝑆𝑆𝑆𝑆 4 3.88 1.94 (0.771) 55 (5.2) 
𝛽𝛽0 + 𝑅𝑅𝑅𝑅𝑁𝑁𝑡𝑡 + 𝑆𝑆𝑆𝑆 5 6.58 3.29 (0.767) 59 (8.2) 

𝛽𝛽0 + 𝑏𝑏𝑅𝑅𝑙𝑙 + 𝑅𝑅𝑅𝑅𝑁𝑁𝑡𝑡 + 𝑆𝑆𝑆𝑆 6 11.07 5.53 (1.247) 63 (11.4) 
𝛽𝛽0 + 𝑏𝑏𝑅𝑅𝑙𝑙 + 𝑅𝑅𝑅𝑅𝑁𝑁𝑡𝑡 + 𝑆𝑆𝑆𝑆 + 𝑡𝑡𝑅𝑅𝑙𝑙𝑡𝑡 7 15.79 7.89 (0.241) 70 (16.3) 

Hunting 

𝜷𝜷𝟎𝟎 + 𝑺𝑺𝑺𝑺 + 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 4 0 0 96 (4.4) 

𝛽𝛽0 + 𝑆𝑆𝑆𝑆 + 𝑁𝑁𝑅𝑅𝑡𝑡ℎ𝑙𝑙𝑅𝑅 + 𝑏𝑏𝑅𝑅𝑙𝑙 5 1.61 0.81 (0.562) 98 (6.0) 
𝛽𝛽0 + 𝑆𝑆𝑆𝑆 + 𝑁𝑁𝑅𝑅𝑡𝑡ℎ𝑙𝑙𝑅𝑅 + 𝑅𝑅𝑙𝑙𝑒𝑒 + 𝑆𝑆𝑆𝑆 7 4.15 2.08 (1.196) 136 (11.0) 

𝛽𝛽0 + 𝑆𝑆𝑆𝑆 + 𝑁𝑁𝑅𝑅𝑡𝑡ℎ𝑙𝑙𝑅𝑅 + 𝑏𝑏𝑅𝑅𝑙𝑙 + 𝑡𝑡𝑅𝑅𝑙𝑙𝑡𝑡 + 𝑅𝑅𝑙𝑙𝑒𝑒 + 𝑅𝑅𝑅𝑅𝑁𝑁𝑡𝑡 + 𝑆𝑆𝑆𝑆 10 9.75 4.88 (2.141) 143 (16.9) 
𝛽𝛽0 2 47.89 23.95 (2.438) 143 (2.2) 

𝛽𝛽0 + 𝑡𝑡𝑅𝑅𝑙𝑙𝑡𝑡 + 𝑅𝑅𝑙𝑙𝑒𝑒 4 52.51 26.26 (2.944) 181 (4.8) 
𝛽𝛽0 + 𝑅𝑅𝑅𝑅𝑁𝑁𝑡𝑡 + 𝑆𝑆𝑆𝑆 5 54.2 27.10 (2.982) 150 (5.6) 

 

 



We used linear mixed-effects models to evaluate how the proportion of harvest varied weekly. We 
modeled the expected proportion of harvest during each week using fixed effects and a random effect of 
year. The fixed effects included calendar week, week of the season (i.e., the first week of the season was 1 
regardless of when the season began), and the type of season (i.e., archery, general, trapping, and post-
trapping) the week occurred within. For calendar week and season week we also included up to a 3rd order 
polynomial relationship to test whether the patterns in the proportion harvested each week was non-linear 
(e.g., proportion of harvest each week increased, peaked, then declined through time). We had 8 candidate 
models for hunting and 7 candidate models for trapping (Table 3.4).   

We used JAGS v4.2.0 (Plummer 2003) via the R2jags package (Su and Yajima 2015) in R v3.6.1 (R Core 
Team 2017) to fit models for the number of wolves hunted and trapped and the proportion of wolves 
hunted in trapped in each week. We ran 3 markov chains for 100,000 iterations with 50,000 discarded and 
a thinning rate of 5. We continued to run an additional 50,000 iterations until chains converged. We 
monitored convergence using visual inspection of the MCMC chains and the Gelman-Rubin diagnostic 
(Gelman and Rubin 1992). We used non-informative priors for all parameters. We used leave-one-out 
cross-validation (LOOCV), LOO information criterion (LOO), and the expected log predictive density 
(ELPD) using Pareto-smoothed importance-sampling in the loo package (Vehtari et al. 2019) to assess 
model fit and to compare models (Vehtari et al. 2017; Gabry et al. 2019). As an additional measure of 
model fit we performed posterior predictive checks using Bayesian p-values calculated from the 𝜒𝜒2-
discrepancy statistic (Gelman et al. 2004).  

We were interested in developing models that could be used to predict annual harvest under combinations 
of harvest regulations, social, and environmental/ecological factors that might occur under adaptive 

Table 3.4. Model selection results for linear mixed-effects models for the proportion of wolves hunted or trapped each week 
in Montana from 2011-2018. Independent predictor variables included the calendar week (CW), the week of the season 
(SW), the type of season the week was in (i.e., archery, general, trapping, post-trapping), and a random effect for year (𝛼𝛼𝑌𝑌𝑌𝑌). 
Models were compared using the difference in leave-one-out cross-validation information criteria (∆LOO), mean and 
standard error of the difference in the expected log predictive density (∆ELPD), and the deviance information criterion 
(DIC). Models in bold were considered competitive. 

Harvest Type Model K* ∆LOO ∆ELPD (SE) DIC (pD) 
Trapping 𝜷𝜷𝟎𝟎 + 𝑺𝑺𝑺𝑺 + 𝑺𝑺𝑺𝑺𝟐𝟐 + 𝜶𝜶𝒀𝒀𝒀𝒀 4 0 0 -295.49 (5.370) 

𝛽𝛽0 + 𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑆𝑆2 + 𝑆𝑆𝑆𝑆3 + 𝛼𝛼𝑌𝑌𝑌𝑌 5 1.85 0.93 (0.602) -293.38 (6.668) 
𝛽𝛽0 + 𝐶𝐶𝑆𝑆 + 𝐶𝐶𝑆𝑆2 + 𝛼𝛼𝑌𝑌𝑌𝑌 4 5.53 2.77 (1.115) -290.31 (5.424) 

𝛽𝛽0 + 𝐶𝐶𝑆𝑆 + 𝐶𝐶𝑆𝑆2 + 𝐶𝐶𝑆𝑆3 + 𝛼𝛼𝑌𝑌𝑌𝑌 5 8.52 4.26 (1.367) -288.18 (6.604) 
𝛽𝛽0 + 𝑆𝑆𝑆𝑆 + 𝛼𝛼𝑌𝑌𝑌𝑌 3 10.38 5.19 (3.551) -285.33 (4.127) 

𝛽𝛽0 + 𝛼𝛼𝑌𝑌𝑌𝑌 2 10.89 5.45 (3.121) -284.43 (3.128) 
𝛽𝛽0 + 𝐶𝐶𝑆𝑆 + 𝛼𝛼𝑌𝑌𝑌𝑌 3 13.59 6.79 (3.031) -282.22 (4.396) 

Hunting 𝜷𝜷𝟎𝟎 + 𝒎𝒎𝒕𝒕𝒕𝒕𝒎𝒎 + 𝜶𝜶𝒀𝒀𝒀𝒀 3 0 0 -1042.25 (8.626) 

𝛽𝛽0 + 𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑆𝑆2 + 𝑆𝑆𝑆𝑆3 + 𝛼𝛼𝑌𝑌𝑌𝑌 5 35.8 17.89 (6.133) -1006.90 (6.216) 

𝛽𝛽0 + 𝐶𝐶𝑆𝑆 + 𝐶𝐶𝑆𝑆2 + 𝐶𝐶𝑆𝑆3 + 𝛼𝛼𝑌𝑌𝑌𝑌 5 71.75 35.87 (7.014) -970.48 (6.221) 

𝛽𝛽0 + 𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑆𝑆2 + 𝛼𝛼𝑌𝑌𝑌𝑌 4 73.96 36.97 (6.694) -968.84 (5.151) 

𝛽𝛽0 + 𝐶𝐶𝑆𝑆 + 𝛼𝛼𝑌𝑌𝑌𝑌 3 89.91 44.95 (7.193) -953.22 (4.047) 

𝛽𝛽0 + 𝐶𝐶𝑆𝑆 + 𝐶𝐶𝑆𝑆2 + 𝛼𝛼𝑌𝑌𝑌𝑌 4 90.08 45.03 (7.244) -952.84 (5.118) 

𝛽𝛽0 + 𝑆𝑆𝑆𝑆 + 𝛼𝛼𝑌𝑌𝑌𝑌 3 91.99 45.96 (7.951) -951.39 (4.131) 

𝛽𝛽0 + 𝛼𝛼𝑌𝑌𝑌𝑌 2 103.5 51.74 (8.259) -940.10 (3.099) 
 

 



harvest management. We used the posterior predictive distributions (Gelman et al. 2004) of the 
coefficient estimates from the most supported model for total wolves hunted, total wolves trapped, the 
proportion of wolves hunted each week, and the proportion of wolves trapped each week to generate 
predictions of the number of wolves harvested under 4 management actions. First, we considered the no 
harvest management action, which was included if the population fell below established minimums for a 
regulated wolf hunting season. Second, the status quo management action included the 2018-2019 harvest 
regulations for wolves, which have been consistent since the 2013-2014 license year. This included a bag 
limit of 5 wolves, 2 weeks of archery, 26 weeks of firearm, and 11 weeks of trapping. For the remaining 2 
management actions we asked MFWP representatives what combination of bag limits and season lengths 
to include in a restricted management action and a liberal management action. Based on an average of 
responses, the restricted management action included a bag limit of 1, 2 weeks of archery, 5 weeks of 
firearm, and 2 weeks of trapping. The liberal management action was a bag limit of 10 wolves, 2 weeks of 
archery, 38 weeks of firearm, and 17 weeks of trapping. 

Results and Management Actions Used for AM Framework 

From the 2011-2018 license years there were 1833 recorded harvests (1197 hunted and 636 trapped). The 
sex ratio of harvest was approximately 1:1 (49% females, 51% males). Total annual harvest ranged from 
128-167 for hunting and 76-129 for trapping.  

All models for total number of wolves hunted and the proportion of wolves hunted each week converged 
with Gelman-Rubin statistics of < 1.01. The most supported model for total wolves hunted included 
season length and method of hunting (Table 3.3), and the model fitted the data well (Bayesian p-values ~ 
0.61; all Pareto-k diagnostic values < 0.5). We found that firearm/crossbow had a positive effect (𝛽𝛽 =
4.02;  𝐶𝐶𝑅𝑅𝐶𝐶 = 3.56− 4.57) and that season length had no discernable effect (𝛽𝛽 = −0.01;  55% 𝐶𝐶𝑅𝑅𝐶𝐶 =
−0.07− 0.04) on the number of wolves hunted. This is likely because of the lack of variation in season 
length in the data. The most supported model for the proportion of wolves hunted each week was season 
type (Table 3.4, Figure 3.5). Most 
wolves were hunted during the 
general season (𝛽𝛽 = 0.05;  𝐶𝐶𝑅𝑅𝐶𝐶 =
0.037− 0.059; Figure 3.5). The 
greater the coefficient, the more 
wolves were hunted per week 
during the season type.  

All models for total number of 
wolves trapped and the 
proportion of wolves trapped 
each week converged with 
Gelman-Rubin statistics of < 
1.01. The most supported model 
for total wolves trapped was the 
null model, or mean effect model 
(Table 3.3). The most supported 
model for the proportion of 

 

Figure 3.5. Coefficient estimates for the effects of type of season on the proportion 
of wolves hunted each week in Montana from 2011-2018. The colored bands 
represent the 95%, 75%, and 55% credible intervals. 

 

 



wolves trapped each week was a quadratic relationship with the week of the season (Table 3.4). We found 
that the proportion of wolves trapped increased and peaked around week 6 of the season and then 
declined. 

For the status quo scenario, we found that predicted total wolves hunted and trapped was 142 (95% 
quantile: 98-197) and 83 (95% quantile: 55-118) wolves, respectively. The predicted mean annual total 
wolf harvest under the status quo scenario was 217 (Figure 3.6A).  

For the restricted scenario, we found that predicted total wolves hunted and trapped was 42 (95% 
quantile: 24-65) and 11 (95% quantile: 2-24), respectively. The predited mean total wolf harvest under the 
restricted scneario was 54 wolves (Figure 3.6B).  

For the liberal scenario, we found that predicted total wolves hunted and trapped was 175 (95% quantile: 
114-252) and 97 (95% quantile: 58-150) wolves, respectively. The predicted mean total annual wolf 
harvest  under the liberal scenario was 272 (Figure 3.6C).   

3.4 AM Framework 

Introduction 

Not only are there multiple components to an AM framework, but also multiple phases. The deliberative 
or set-up phase for AM (Williams et al. 2002) consists of defining the problem and developing the 

 

Figure 3.6. Predicted posterior distribution for the total number of wolves hunted under 3 different hunting season lengths for 
wolves in Montana: A) the restricted management action, B) the status quo management action, and C) the liberal management 
action. 

 

 



components: objectives, 
management actions, predictive 
models, optimization algorithms, 
and monitoring (Figure 3.7). The 
deliberative phase provides the 
framework for informed 
management. The iterative phase 
is based on the components 
developed during the deliberative 
phase, and the optimization 
algorithm is used to identify the 
best managemement action based 
on objectives, available 
management actions, model 
predictions and utility functions, 
and estimates from monitoring 
data (Figures 3.1 and 3.7). As 
management actions are 
implemented, the measureable 
attributes are affected, which is 
estimated via monitoring. Model 
predictions are compared to estimates from monitoring, leading to increased support for models that 
predict well and decreased support for models that predicted poorly. The model support is updated and 
used to identify the new optimal management action, and the cycle continues (Figure 3.1). The iterative 
phase is thus based on current knowledge of how the population functions (model support) and current 
population size estimated from monitoring. The cornorstone of AM is taking advantage of iterated 
decision making to learn, and then use what is learned to improve future decisions.  

A challenge with wolf management in Montana is general uncertainty in the effects of harvest on 
population dynamics of wolves. Harvest appears to be mostly an additive source of mortality for yearlings 
and adults (Creel and Rotella 2010; Murray et al. 2010; Horne et al. 2019) and to reduce pup survival and 
recruitment (Objective #2, Ausband et al. 2015, 2017). Despite the negative effects of harvest on survival 
and recruitment, however, wolves in Montana have sustained harvest rates from 0.17 to 0.36 and 
remained relatively stationary (Inman et al. 2019). This may be due to increased immigration into 
Montana or decreased dispersal from Montana (i.e., positive net immigration). Because wolves can travel 
great distances, immigration and dispersal can be important processes in dynamics of wolf populations 
(Hayes and Harestad 2000; Fuller et al. 2003; Adams et al. 2008; Bassing 2017). Decreased dispersal 
rates of wolves in Alaska partially compensated for harvest mortality and resulted in stationary densities. 
It is unclear, however, how net immigration into Montana affects wolf population dynamics. 

We applied our simplifeid AM approach as an example of how AM could be used to guide harvest 
management decisions for gray wolves in Montana and test the hypothesis that net immigration partially 
compensates for harvest. Our objectives were to 1) develop a simplified deliberative phase for the AM 
framework for wolves in Montana , 2) determine optimal management actions given how we quantified 
the components in the simplified deliberative phase, and 3) implement the iterative phase of AM as an 

 

Figure 3.7. Diagram of structured decision making and adaptive management 
showing the process to set up the decision model framework. This figure is adapted 
from previously published figures (Williams et al. 2007, McGowan et al. 2015). The 
double ended arrows demonstrate the concept of continuing to revisit past steps in 
the process, and the dashed arrows demonstrate the concept of revisiting all steps of 
AM after implementation.   

 

 



example of how this tool could work moving forward. We used population models to describe changes in 
abundance of wolves and formalized qunatitative relationships between population size of wolves, 
recruitment, depredation events, impacts of wolves on ungulates, and the harvest regulations and 
management objectives. We considered 2 alternative models of wolf population dynamics. The first 
model assumed net immigration of wolves into Montana was 0 and was not partially compensating for 
harvest. The second model assumed net immigration into Montana was positive and was partially 
compensating for harvest.  

Methods 

For the deliberative phase, we used the objectives and mathematical functions detailed above (Sect. 3.2) 
to evaluate how well alternative management actions meet objectives. We evaluated the management 
actions elicted from MFWP representatives and incorporated uncertainty in total harvest from Section 3.3 
above. For the predictive models, we used a per capita model with additive harvest mortality and density 
dependent recruitment. We used estimates of abundance of wolves in Montana (Inman et al. 2019) as the 
monitoring data.  

We used stochastic dynamic programming (SDP) to compute the optimal set of management actions 
(Bellman 1957; Williams et al. 2002; Puterman 2014). We solved the problem for an infinite time horizon 
by using policy iteration in R v3.6.1 (R Core Team 2017) using package MDPtoolbox (Chadès et al. 
2017). We assumed a discount factor close to 1 (i.e., 0.99999; Puterman 2014). A discount factor 
describes the relative value of rewards in future time periods, and a value close to 1 indicates that the 
value of a resource in the future is the same as the value of the resource now (Puterman 2014). The 
optimal management actions were state-dependent, i.e., the optimal action depended on population size 
and model weights (support for models). Therefore, uncertainty could be reduced by implementing the 
optimal management actions and then updating model weights in the iterative phase.  

As an example of the iterative phase, we used a passive adaptive learning and updated model weights 
using Bayes’ theorem in 2 different types of simulations. First, we simulated a population following the 
optimal management actions to predict the median population size, number of pups recruited, number of 
depredation events, and the reward value for how well each management action met objectives. We ran 
1000 replications of each simulation for 100 years. Each year, the optimal management action dependent 
on population size and model weight was selected and enacted, and the population and model weight 
states were updated. We updated model weights assuming model 1 was correct and then model 2 was 
correct. Second, we simulated the wolf population in Montana from 2011-2018, however, instead of using 
the optimal management actions we used the status quo management action enacted by MFWP for those 
years. We ran 1000 replications of each simulation. To update model weights, we compared predictions 
from the competing models and the estimated abundance of wolves in Montana from monitoring data 
(Inman et al. 2019). Again, we recorded predictions for median population size, number of pups recruited, 
number of depredation events, and the reward value. Additionally, we recorded changes to model weights 
to determine if there was support for one hypothesis over the other.  



Preliminary Results and Discussion 

Expected outcomes differed for the 4 management actions (no hunting, restricted hunting, status quo, and 
liberal hunting). No hunting had greater median number of depredation events per year for all population 
sizes (Figure 3.8). Restricted hunting was expected to have slightly more depredation events than the 
status quo or liberal hunting actions because future population size was greater under the restricted 
hunting regulations and we used per capita depredation rates (Figure 3.8). Total number of pups recruited 
was expected to be greatest under more restrictive hunting management actions (Figure 3.8). The median 
reward, which is how well an action meets all objectives, for each management action differed across the 
population sizes (Figure 3.8).  

Based on the model-averaged transition probabilities under equal model weight for the 2 hypotheses (i.e., 
0.5), no hunting resulted in the highest probability of increasing population size for all initial abundances. 
Restrictive hunting also had a high probability of increasing future population size except when the initial 
population was below 200 wolves. The status quo and liberal hunting management actions had the lowest 
probability of increasing future abundance, and when the initial population was fewer than ~700 wolves, 
both scenarios had a greater probability of reducing the population. An example of output from this 
decision tool that can be useful for management is a policy plot (Figure 3.9). A policy plot displays the 
optimal management action to implement for different abundances given the components of the 
deliberative phase of AM (i.e., objectives, management actions, population models, and optimization 

 

Figure 3.8. Expected performance from 2 models of wolf population dynamics with equal model weight under 4 management 
actions: no harvest, restricted harvest, status quo, and liberal harvest. The figures show the median expected A) number of 
depredation events, B) number of pups recruited, C) total harvest, and D) reward or utility dependent on the current state of the 
population and management action. 

 

 



method). AM does not produce static numbers, and when one hypothesis gains support over others, the 
policy plot could change. In the example figure (Figure 3.9), the optimal management action varied little 
with different model support (varied by ~ 50 wolves for 0.1 and 0.9 model weight). Although we found 
support for the hypothesis that net immigration into Montana was positive, reducing this uncertainty had 
little effect on the optimal management actions (Figure 3.9). When there was little to no support for the 
hypothesis (model 1 weight of 0.9) the population size at which to implement the liberal management 
action occurred at 1030 compared to 980 when there was most support for the hypothesis (model 1 weight 
of 0.1). Therefore, this uncertainty does not influence optimal decisions for harvest management of 
wolves. In general, the optimal management action was no hunting when population size was less than 
440 wolves, restrictive hunting when the population was between 440 and 620 wolves, status quo hunting 
when population size was between 620 and 990 wolves, and liberal hunting when population size was 
greater than 990 wolves in the example (Figure 3.9).  

When we simulated passive adaptive management for the wolf population in Montana from 2011 to 2018 
for the iterative phase, we found that expected wolf population size, number of pups recruited, and 
depredation events declined (Figure 3.10). This follows general patterns for estimates of abundance of 
wolves and the number of verified depredation events in Montana (Inman et al. 2019). Over the 8 year 
period, weight for model 1 (net immigration = 0) declined from 0.50 to 0.36, and weight for model 2 (net 
immigration > 0) increased from 0.50 to 0.64 (Figure 3.10).  

AM can easily account for many sources of uncertainty, including structural or model uncertainty. Using 
AM, we were able to find support for the hypothesis that net immigration of wolves into Montana was 
positive. We considered 2 competing models of wolf population dynamics. One model assumed that there 
was not net immigration into Montana, whereas the second model assumed that net immigration into 
Montana was positive. By simulating the wolf population in Montana with passive AM, we found that 
model uncertainty could be reduced. From 2011 to 2018, the second model gained support increasing 

 

Figure 3.9. Example of optimal management strategies based on 2 competing models of wolf population dynamics and different 
model weights. Change in model weights indicates support for one hypothesis over another. Optimal policies were state-
dependent on both initial wolf population size and model 1 weight. The decisions considered included no harvest, restricted 
harvest, the status quo harvest for wolves in Montana, and liberal harvest.         

 

 



from 0.5 to 0.64. This supports the hypothesis that net immigration of wolves into Montana is positive. 
Dispersal rates from Yellowstone are high (Jimenez et al. 2017), and may be a source for Montana. 
Positive net immigration could partially compensate for harvest in the wolf population in Montana, and 
allow the population to sustain greater harvest rates than if net immigration was 0. In the second model 
we assumed that net immigration was a mean of 10%, however uncertainty in the parameter value of net 
immigration could also be included in passive adaptive management to reduce uncertainty in the estimate 
over time (Williams et al. 2002).  

Learning in AM is contingent on monitoring data. Given how we set up the deliberative phase for the AM 
framework for wolves, monitoring only requires estimates of abundance. These estimates of abundance, 
however, should be reliable. Work from Objective #1 will help ensure future estimates of abundance are 
more accurate and precise, which will improve learning in an AM framework. With AM it is common to 
revisit objectives, alternatives, and even population models over time. We have developed a flexible AM 
framework that will allow managers to evaluate different constructions of objectives (weights and utility 
functions) and different management actions (combinations of bag limit, hunting season length, and 
trapping season length) for managing wolves with regulated public harvest. We developed a tool for FWP 
to alter risk attitudes for objectives, weights of objectives, and other factors related to the construction of 
utility functions. With this tool, managers can evaluate any combination of season lengths and bag limits 
to create custom management alternatives. Additionally, we added the capability to evaluate management 
alternatives at the regional scale (FWP regional administrative boundaries) to account for spatial variation 

 

Figure 3.10. Expected outcomes from simulations of passive adaptive management for wolves in Montana from 2011 – 2018 
based on harvest decisions implemented by Montana Fish, Wildlife and Parks. The expected performance metrics were derived 
from the weighted average of 2 models of wolf population dynamics (model 1: no net immigration, model 2: positive net 
immigration). Performance includes expected A) population size, B) number of annual depredation events, C) number of pups 
recruited, and D) change in model 1 (no net immigration) weight.                                         

 

 



in the measurable attributes of the objectives. Measurable attributes and construction of quantitative 
functions for objectives can be revisited and revised as needed to ensure the AM framework is a useful 
tool for wolf management decisions.     

Sensitivity analyses 

To test sensitivity of recommended decisions and learning to uncertainty in estimates of abundance, we 
will use the upper and lower confidence limits of estimates of abundance. The AM model and 
recommended decision was insensitive to uncertainty in other parameter values in the models. The only 
component that the recommended decision was sensitive to was objective weight for maintaining hunting 
opportunities for wolves or for increasing public acceptance of wolf harvest. Therefore, for this 
framework to be effective, careful consideration of stakeholder and decision maker values should be 
considered to determine objective weights.  
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OBJECTIVE 4: DESIGN A TARGETED MONITORING PROGRAM—S. Sells and A. Keever, 
Projects 1 & 2 

4.1 Introduction 

Monitoring plays a central role in wildlife management. Monitoring allows managers to detect changes in 
wildlife populations or habitat, evaluate effectiveness of management actions for altering wildlife 
populations or habitat, make management decisions based on population size or status of the resource, 
and facilitate learning to improve future management actions (Nichols and Williams 2006). Monitoring 
can be most useful when it is directly linked to objectives and targets key uncertainties that impede 
management (Gibbs et al. 1999; Nichols and Williams 2006). Targeted monitoring can be more efficient 
and a better use of limited resources compared to surveillance monitoring (i.e., monitoring not guided by 
a priori hypotheses that include all aspects of a population’s demographic and ecological factors (Nichols 
and Williams 2006). 

Wolves in Montana are managed through harvest. Accordingly, reliable estimates of population size are 
needed to make informed decisions for harvest regulations and evaluate effectives of harvest regulations 
in meeting objectives of wolf management. As the final step of this project, we will design a targeted 
monitoring program to provide reliable estimates of population size and inform decisions in the adaptive 
management (AM) framework.  

4.2 General Approach 

We will perform sensitivity analyses on the territory size, group size, recruitment, and AM models to 
identify factors that strongly influence results and decisions. While integrating the territory and group size 
models into POM, we will determine the sensitivity of POM estimates to these new models and 
recommend the monitoring effort to reduce uncertainty in these estimates. For the empirical recruitment 
model, we evaluated the sensitivity of accuracy and precision of estimates to different amounts of group 
count and collar data. These sensitivity results will help determine the amount of data needed to produce 
reliable estimates of recruitment. For the component recruitment model, we will evaluate sensitivity to 
uncertainty in data that are used to generate predictions of recruitment. These results will help determine 
which data may need to be monitored to produce reliable predictions of recruitment from the model. We 
are continuing to refine the AM framework; however, we evaluated sensitivity of the models in the AM 
framework to uncertainty in parameter estimates. In some instances, reducing uncertainty does not affect 
decisions (e.g., Smith et al. 2013), and may not be worth the cost of collecting the data. Therefore, if the 
model is sensitive to any uncertainties, we will calculate the expected value of information (Raiffa and 
Schlaifer 1961; Runge et al. 2011; Williams et al. 2011), which represents the increase in effectiveness of 
management expected if uncertainty were reduced. Additionally, as a post-hoc analysis, we will evaluate 
the sensitivity of decisions and learning in AM to uncertainty in estimates of abundance using the lower 
and upper confidence intervals. 

The components which most influence the results and decisions can be targeted for monitoring to reduce 
uncertainty and produce robust estimates of abundance and recruitment. Based on results of sensitivity 



analyses for the different models, we will develop recommendations for a unified monitoring program. 
Recommendations will include sampling effort, sampling distribution, and what should be monitored.   
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