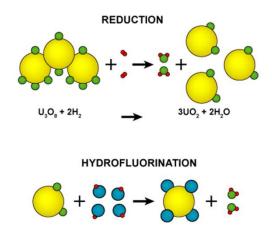

January 18, 2022

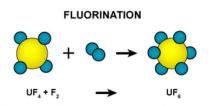
Melissa Warner Department Manager, Aqueous Separations and Radiochemistry

Nuclear Fuel Cycle

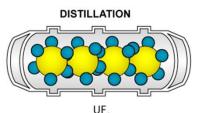
Current U.S. (Open) Fuel Cycle


Mining and Milling

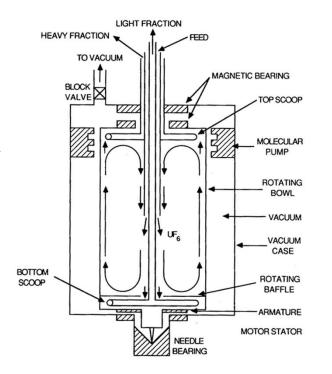

- A reliable source of enriched uranium is needed for reactor demonstrations and deployment
- Uranium is mined in three ways:
 - In situ leaching
 - Open pit mining
 - Underground mining
- Wyoming is the US's largest uranium producer, but most of our uranium is imported.
- Advanced reactors utilize low enriched uranium
 - Most use 19.75% U-235 enriched uranium (High-Assay Low Enrichment Uranium)
 - This is in comparison to LWRs which currently use < 5 %
- Supply chains for uranium and enrichment will be needed to support future reactor deployment.

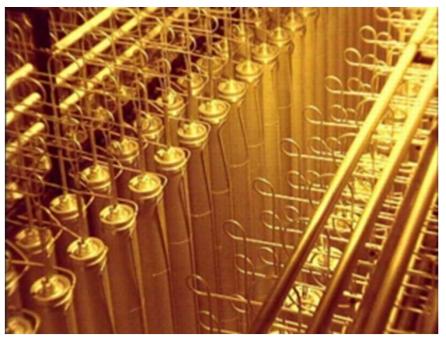

Conversion

- Natural uranium (U) contains two isotopes
 - 0.7% is "fissile" ²³⁵U which is easily split in a reactor
 - 99.3% is "fertile" ²³⁸U which is not
- Natural uranium is in an oxide form (U₃O₈)
 - At the conversion plant U₃O₈ is converted to uranium hexafluoride (UF₆₎, which is a solid at room temperature but a gas at slightly higher temperatures
 - UF₆ is stored and shipped in large cylinders
- Fresh nuclear fuel in current reactors is ~4.5% fissile content, requiring enrichment:
 - 1. Convert the Uranium to a gas
 - 2. Spin the gas at high speeds in centrifuges
 - 3. The lighter ²³⁵U partially separates from the heavier ²³⁸U



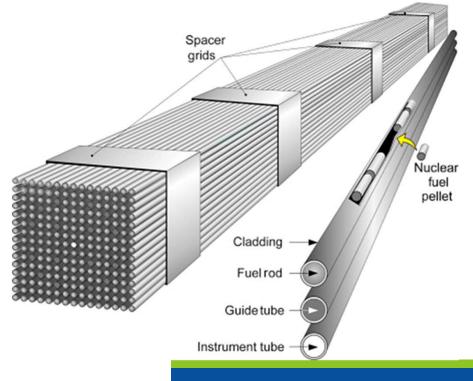
Green salt (UF₄) is formed when uranium dioxide (UO₂) is reacted with anhydrous hydroflouric acid (HF)

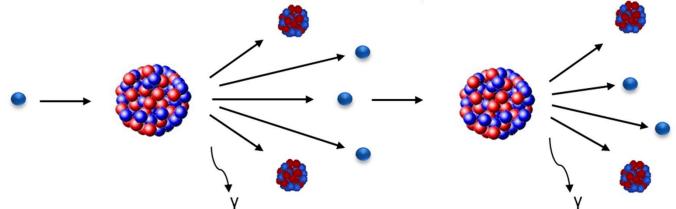

Green salt (UF_4) is contacted with fluorine gas (F_2) to form uranium hexaflouride (UF_6) gas



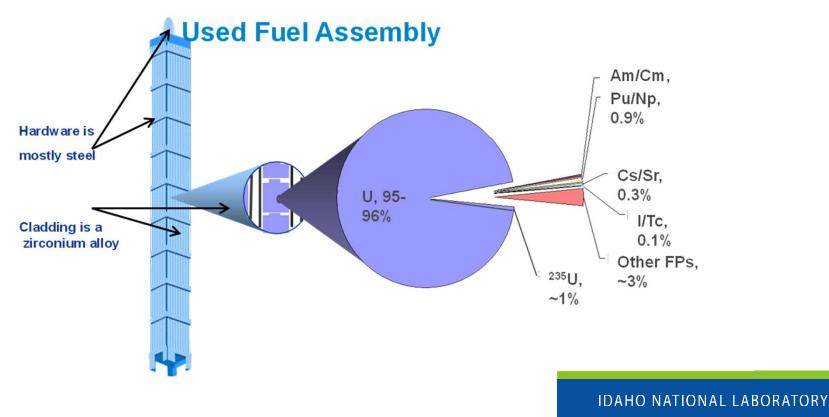
http://www.theupa.org/uranium_technology/conversion/

Enrichment


- Enrichment involves passing UF₆ through high-speed centrifuges
 - In each centrifuge the ratio of ₂₃₅U to ₂₃₈U is changed slightly into a "heavy fraction" scooped from the outside and a "light fraction" scooped from the inside
 - Hundreds of centrifuges are linked in "cascades" to produce enriched U while also generating larger amounts of depleted U that is discarded


Fuel Fabrication

- Fuel fabrication is a multi-step process
 - UF_6 is received and converted to an oxide powder (UO₂)
 - The powder is pressed into pellets
 - The pellets are heated (sintered) to create a ceramic
 - The ceramic pellets are stacked inside cladding to make fuel rods, which are welded shut
 - The fuel rods are loaded into assemblies which are typically 16 to 17 inches square and ~16 feel long
 - The very slightly radioactive assemblies are inspected, then shipped to reactors
 - 150 to 250 assemblies are loaded into a core, depending on the reactor size.


- In the reactor, nuclear fuel is irradiated for ~4.5 years
 - During this time, ²³⁵U is fissioned (split) by neutrons to produce electricity
 - Fissioning results in heat, fission products (smaller atoms) and more neutrons to continue the process

- After the fissile material is depleted and fuel is "spent" and replaced during refueling
 - The highly radioactive used fuel is initially stored in water to "cool", then may be transferred to dry storage

Used fuel characteristics (1/3)

- Used fuel is composed mostly of ²³⁸U, along with:
 - ~4% fission products
 - ~1% residual ²³⁵U
 - ~1% heavier "transuranic" isotopes from neutron capture of ²³⁸U (breeding)

Used fuel characteristics (2/3)

¹ H																	² He
³ Li	⁴ Be											5 B	⁶ C	7 N	°	9 F	10 Ne
¹¹ Na	¹² Mg											¹³ AI	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ CI	¹⁸ A
¹⁹ K	20 Ca	21 Sc	²² Ti	²³ V	²⁴ Cr	²⁵ Mn	²⁶ Fe	27 Co	²⁸ Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	³⁹ Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	⁴⁵ Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	⁵⁴ Xe
55 Cs	56 Ba	Ln	72 Hf	⁷³ Та	⁷⁴ W	75 Re	76 Os	77 Ir	78 Pt	⁷⁹ Au	80 Hg	81 Ti	82 Pb	83 Bi	⁸⁴ Po	⁸⁵ At	86 Rn
87 Fr	⁸⁸ Ra	An	104 Rf	105 Db	106 Sg	¹⁰⁷ Bh	108 Hs	109 Mt	110 Uun		•		•	•	•		•

Lanthanides	57	58	⁵⁹	⁶⁰	61	62	63	64	65	66	67	⁶⁸	⁶⁹	70	⁷¹
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Actinides	⁸⁹	90	91	92	93	⁹⁴	95	96	97	98	99	¹⁰⁰	¹⁰¹	¹⁰²	¹⁰³
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Fission products

Activation products

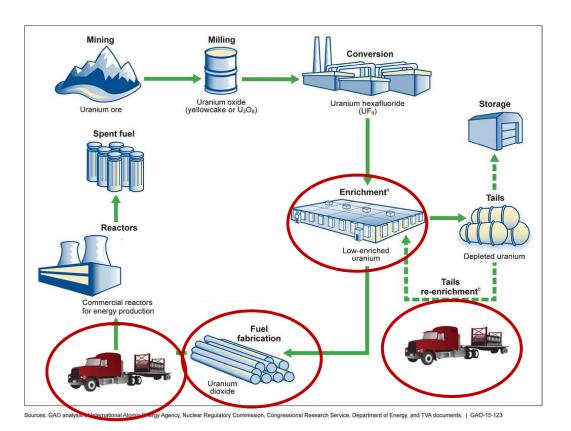
Used fuel characteristics (3/3)

- Used fuel is initially highly radioactive due to short-lived fission products
- Radioactivity is a property of unstable isotopes which decay by giving off particles and rays (radiation) to become different (lighter) isotopes.
 - If the new isotope is also unstable, it will also decay
 - If the new isotope is stable, the process stops
- Every radioactive isotope has a "half life" which is the time until half of the atoms of the isotope decay
 - In 10 half lives, one thousandth (0.1%) of the isotope remains
 - In 20 half lives, one millionth remains
 - (Example: Carbon-14 dating measures the amount of ¹⁴C left in plant and animal remains to determine when they died using a half live of 5,730 years)
- Most fission products have half lives of less than a second to a few days
 - Used fuel typically is "cooled" for at least 5 years to allow most of the fission products to decay away
 - The remaining fission products and transuranics have half lives that are measured in years to centuries or longer
 - The longer the half life, the longer the material remains radioactive, but at a lower level because less decay is occurring, and less radiation is produced

Used Fuel Disposition Options

- After cooling, used fuel is currently stored waiting for final disposition
 - While used fuel becomes less radioactive with time, it remains a health hazard for thousands of years
- The disposition options are:
 - Direct disposal in a geologic repository designed to contain residual hazards for 100,000 years or more (current U.S. approach)
 - Recycling (practiced in some countries in Europe and Asia)
- Recycling separates the fuel:
 - Uranium and plutonium are recovered for reuse
 - Fission products and hardware are disposed in a geologic repository
 - Other transuranics may be recovered for reuse or included in the waste

Recycling Options

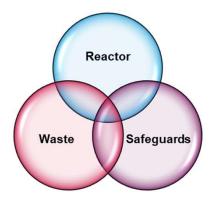

- With current reactors, only limited recycle is possible:
 - Recover the U for re-enrichment
 - Recover the Pu, which is mostly fissile
 - One recycle is feasible, after which too little fissile remains and the used fuel would be direct disposed
 - Results in ~30% more electricity from the original mined uranium and a small reduction in waste
 - Currently not cost effective
- With advanced reactors, continuous recycle may be cost effective:
 - Recover U, Pu, other transuranics (optional)
 - Irradiate in a fast spectrum reactor which supports enough breeding to produce fissile as fast as it is consumed
 - Recycle the resulting used fuel adding depleted uranium to make up for the fission products that are discarded
 - Existing inventories of depleted uranium would last for 3,000 years at the current level of nuclear generation without any new mining
 - Could result in over 100 times as much electricity from the original mined uranium and ~1/10th the waste to geologic disposal
 - Requires technology development

Commercial application of recycling abroad

- France
 - UP-1 plant in Marcoule began operation in 1958 (~400 MT/yr)
 - UP-2 plant in La Hague began operation in 1967 (~400 MT/yr)
 - LWR oxide plant (UP2-400) began in La Hague in 1976 (400 MT/yr)
 - LWR oxide plant (UP3) began in La Hague in 1990 (800 MT/yr)
 - LWR oxide plant (UP2-800) upgrade in La Hague in 1994
- United Kingdom
 - Windscale plant for Magnox fuel began in 1964 (1200-1500 MT/yr)
 - THORP LWR oxide plant began in 1994 (~1200 MT/yr)
- Japan
 - Tokai-Mura plant began in 1975 (~200 MT/yr)
 - Rokkasho plant currently undergoing hot commissioning (800 MT/yr)
- Russia
 - Plant RT-1
 - Began operation in 1976, (400 MT capacity)
- China
 - Reprocessing pilot plant (60 MT/yr capacity)
 - Hot commissioning in progress
 - Planning 800 MT/year plant to begin operation in 2030

Fuel Cycle Infrastructure Updates Needed to Support Advanced Reactors

- Enrichment
 - Variety of U-235 enrichments between 5 and 20 wt.%
- Fuel fabrication/de-conversion
 - Multiple fuel form options (metallic, oxide, liquid, etc.)
- Transportation
 - UF₆ to fuel fabrication facility
 - As fuel to reactor facility



Fuel Cycle of the Future

We don't know what it will look like, but we know what attributes are needed

- Cost competitive
- Manage proliferation risk
- Manage of waste
- Address safety and security

WWW.INL.GOV