Coal to Nuclear Considerations

Montana Legislature Energy and Telecommunications Interim Committee

Marc Nichol Senior Director of New Reactors January 18, 2022

Coal Plant Closure – Devastating Impacts

- Two coal plants closed on the same day in rural Adams County, Ohio
- The closing of those plants meant the loss of more than 700 jobs and devastation to the local economy.
- "That money is never coming back," Ty Pell [president of the county commissioners] said of the millions of dollars in salaries and tax revenue
- The county commission has slashed the budget two years in a row in anticipation of lean times ahead
- Workers fled for jobs in Wyoming, Florida, Washington, Idaho, Wisconsin, Colorado, Oregon, and elsewhere.
- The local school system has seen enrollment plunge and has cut positions to make up for budget shortfalls

Source: Washington Post, "In small towns across the nation, the death of a coal plant leaves an unmistakable void," 2019

System Benefits of SMRs

- Fuel diversity
 - Lowest cost systems have fuel diversity
 - Long term price stability
- Reliable dispatchable generation
 - 24/7, 365 days per year, years between refueling
 - Capacity factors of 95% or more
- Integration with renewables and storage
 - Paired with heat storage and able to quickly change power
- Carbon-free generation
 - Zero-carbon emissions, one of the lowest total carbon footprints
- Resilience for mission critical activities
 - Black-start capability and able to operate independent from the grid
 - Protect against natural phenomena, cyber threats and electro-magnetic pulses
- Use existing transmission infrastructure Source: SMR Start, <u>SMRs in Integrated Resource Planning</u>

Economic Benefits of SMRs

ŊÊI

- Employment
 - 900 manufacturing and construction jobs over 4 years (average)
 - 300 permanent positions during 60+ years of operation
 - Multiplier effect: additional 1.66 jobs in local economy, 2.36 rest of the state
 - Nuclear jobs pay 20% more, on average, than jobs at other energy sources
 - Nuclear jobs pay 36% more than average salaries in local area
- Economic Activity
 - \$500M+ in direct and indirect economic output annually
 - \$270 million in electricity sales
 - Spending at local (\$10M), State (\$48M) and national (\$236M) level
 - Taxes: \$10M in state and local, and \$40M in federal annually

Generation Type	Permanent Jobs on Site ¹	Industry Wage Median	Carbon Free?	Firm Energy?	Benefits Concentrate d Locally?
Nuclear	237*	\$41.32	Yes	Yes	Yes
Coal ²	107	\$33.64	No	Yes	Yes
Natural Gas	30	\$34.02	No	Yes	Yes
Wind	80	\$25.95	Yes	No	No
Solar	36	\$24.48	Yes	No	No

1) Comparison of alternatives producing annual electricity output equivalent to a typical 1,000 MWe coal plant

2) Only jobs at coal plant, does not include jobs associated with coal mining

Source: Scott Madden, Gone with the Steam

Similar Jobs and Limited Retraining

Coal Plant Position	# Dedicated Coal Positions	SMR Position	# Dedicated SMR Positions	Position Type	Degree of Retraining Required
Operations Supervisor	5	Senior Reactor Operator	5	Supervisor	High
Control Room Operator	10	Reactor Operator	15	Operator	High
Field Operator	15	Non-Licensed Operator	25	Operator	Low
Lab Operator/Chemistry/Scrubber	4	Chem Tech	14	Craft	Medium
Maintenance Supervisor	2	Maintenance Supervisor	3	Supervisor	Medium
Mechanical Craft	12	Mechanical Craft	21	Craft	Low
I&C Craft	9	I&C Craft	10	Craft	Medium
Electrician Craft	5	Electrician Craft	11	Craft	Low
Technician	11	Technician	13	Laborer	Low
Security Officer	20	Security Officer	48	Laborer	Low
Sub-Total	93		165		
All Other Positions	14		72	42 are O&M Support (Planners, Outage, etc.)	Medium
Total On-Site Positions	107		237		
Possible Centralized Positions		33			
Total Positions			270		

Source: NuScale and Scott Madden, Gone with the Steam

ŊÊI

SMRs Are Environmentally Friendly

- Air Quality
 - Zero-carbon emissions, one of the lowest total carbon footprint
 - No emissions of SOx, NOx or other air pollutants
- Water Use
 - Many SMRs are being designed with ability for dry air cooling
 - Would enable SMRs to be located where water is scarce or expensive
- Land Use (per 1,000 MWe)

	SMR	NGCC	Wind	Solar
Capacity factor (%) ¹²	95	55 ¹³	35	25
Plant life (years)	60 to 80	40 to 50	20 to 25	20 to 25
Lifetime TWh	647	241	76	55
Land required (acres)14,15,16	50 ¹⁷	343	85,240	7,900
Land Utilization (acres per Lifetime	<0.1	1.4	1,125	144
TWh)				

Utility and State Interest in SMRs

State	Legislative Action	Utility Action		
Alaska	Bills introduced to repeal voter approval to site	Eielson AFB site for first micro-reactor for DoD		
Arizona	Clean energy standard under development	Utility interest in 25 MWe of UAMPS/NuScale		
Idaho	Tax incentives passed	Host of UAMPS/NuScale SMR		
Montana	Passed bill to study coal to SMR Repealed voter approval to site	Consideration of replacing Colstrip with nuclear		
Nebraska	Passed bill on SMR tax incentives	Broad support for SMRs in state		
North Carolina	Passed decarbonization plan bill	Duke Energy includes SMRs in IRP		
Virginia	Nuclear Energy Strategic Plan Clean energy standard including nuclear	Dominion includes SMRs in IRP		
Washington	Clean energy standard including nuclear	Energy Northwest with X-energy demo Grant County PUD MOU with X-energy and NuScale		
Wyoming	Passed bill calling for coal retirements to be replaced with SMRs	Rocky Mt. Power siting for TerraPower demo ©2022 Nuclear Energy Institute 8		

Advanced Nuclear Deployment Plans

ŊÊI

9

More than 20 projects in planning or under consideration in U.S. and Canada

Policy Support for Coal Communities

- E.O. 14008 created Interagency Working Group within DOE to identify and provide federal support to coal, oil, gas and powerplant communities
 - April report on existing ways to provide grants, loans, and other assistance
 - Identified over \$45 billion currently available in existing federal programs
- Federal Legislation
 - Infrastructure Investment and Jobs Act and American Rescue Plan
 - Promote new opportunities in communities where coal plants are shutdown
 - Fission for the Future Act S.3428 (Manchin and Barrasso)
 - Financial assistance priority for activities considering coal to nuclear
- State Initiatives
 - Colorado established Office to help coal communities move into new jobs
 - New Mexico enacted provisions for funding coal community assistance
 - Montana Study bill for feasibility of SMRs to replace coal-fired boilers

Source: Good Energy Collective, *Opportunities for Coal Communities through Nuclear*, December 2021

Considerations for Replacing Coal Plants with SMRs

- Community
 - Community support for coal to nuclear transition
 - Ownership expectations for the site
 - Shared project engineering experience with coal and nuclear
- Economic
 - Inherent value of the land
 - Ability and desirability of CPP
- Infrastructure
 - Quality and value of grid connection
 - Transport infrastructure from barge, rail lines and heavy haul roads
 - Condition and understanding of site environmentally
 - Suitability of site to host a nuclear power plant

Source: INL, Transitioning Coal Power Plants to Nuclear Power

Colstrip to SMR

- Power plant
 - Two units 778 MWe each
 - ~200 workers
 - Co-located mine
- Local community
 - Town of 2,200 people
 - Shutdown could reduce county revenue by ~10%
- Repurposing considerations
 - Complete decommissioning cost estimate \$900M
 - Over 40 sq miles available for SMR
 - Reuse of power block valued at \$225M
 - Reuse of turbine could save 5.5% of cost of original plant

Source: INL, Transitioning Coal Power Plants to Nuclear Power

Coal Plants and SMR Suitability

Source: ORNL, *Evaluation of Suitability of Selected Set of Coal Plant Sites for Repowering with Small* <u>Modular Reactors</u>, March 2013

QUESTIONS?

10

IIII

TIT

TITLE

TITI

LILLE

TITI

TTTT ITTT

1

urd Way, GENSLER

Backup / Content by Others

Types of Advanced Reactors

Range of sizes and features to meet diverse market needs

Advanced Nuclear Versatility

Affordable, Resilient and Flexible

ŊÊI

Advanced Reactor Cost Competitiveness in Electric Markets

From SMR Start Report on SMR Economics: <u>http://smrstart.org/wp-content/uploads/2021/03/SMR-Start-Economic-Analysis-2021-APPROVED-2021-03-22.pdf</u>

Considering system reliability needs makes nuclear even more affordable

Government Deployment Support

- Valuing all carbon-free sources of energy
- Federal Programs
 - Demonstrations
 - Tax Credits (e.g., Production)
 - Loan Guarantees
 - Federal Power Purchase Agreements
- State Programs
 - Tax incentives (e.g., property)
 - Advanced cost recovery
 - Infrastructure

http://smrstart.org/policy-statement/

Current Status – Demonstrations by 2030

Developer	Technology	Utility	Location	Size
NuScale	Light Water SMR	UAMPS	Idaho	6 @ 77MW
TerraPower & GE- Hitachi	Liquid Metal	Pacific Corp.	Wyoming	345 - 500MW w/thermal storage
X-energy	High Temp. Gas	Energy Northwest	Washington	4 @ 80MW
GEH BWR X-300	Light Water SMR	OPG	Ontario, Canada	300 MW
Oklo	Micro-reactor	Oklo	Idaho	1.5 MW
Ultra Safe Nuclear	Micro-reactor	Global First / OPG	Chalk River, Canada	5 MW
TBD	Micro Reactor	Department of Defense	Alaska	TBD
TBD (X-energy or BWXT)	Mobile Micro Reactor	Department of Defense	Idaho	TBD

NuScale Coal Replacement Study

Repowering our Energy Communities

- A VOYGRTM power plant represents a century long investment in the host community
 - 1,200 construction jobs over three years
 - 270 operation jobs for 60 years
 - 677 induced/indirect jobs for 60 years
 - \$16M in local taxes, \$470M in local goods and services yearly
- Siting VOYGR power plants at retiring coal plants can equitably transition and repower communities clean energy
 - Retain and retrain coal/gas plant workforce
 - Re-use coal/gas plant infrastructure
 - Preserve local tax base and economy, worker and communities

NEI

TerraPower Coal Replacement - Wyoming

- A Natrium power plant represents a century long investment in the host community
 - 2,000 workers at construction peak
 - 250 people support day-to-day activities
 - Power 400,000 homes
- Kemmerer, WY selected as site for first Natrium
 - Near the Naughton Power Plant
 - "People across Wyoming welcomed us into their communities" Chris Levesque, CEO of TerraPower
 - Construction planned to begin in mid-2024

TVA Coal to Nuclear Options

- TVA 2019 IRP signals phase out of coal-fired assets
 - Five coal-fired stations still operating
 - Two most suitable for an SMR
 - Three have siting challenges that would need to be addressed
 - Eight former coal plants
 - Six sites are most suitable for an SMR
 - One site transformed into a recreation area
 - One has siting challenges that would need to be addressed

Coal to Nuclear Reference Reports

ŊÊI

- 1. Scott Madden, Gone with the Steam, October 2021
- 2. INL, *Transitioning Coal Power Plants to Nuclear Power*, December 2021
- 3. Good Energy Collective, <u>Opportunities for Coal Communities through</u> <u>Nuclear</u>, December 2021
- 4. ORNL, <u>Evaluation of Suitability of Selected Set of Coal Plant Sites for</u> <u>Repowering with Small Modular Reactors</u>, March 2013
- 5. ORNL, <u>TVA Coal-Fired Plant Potential for Advanced Reactor Siting</u>, September 2021