
1.  Introduction and Background
Smoke from landscape (wild, prescribed, and agricultural) fires significantly degrades air quality across the 
United States (US) (Brey, Barnes, et al., 2018; Brey & Fischer, 2016; Buysse et al., 2019; Ford et al., 2017; 
Kaulfus et al., 2017; Val Martin et al., 2015). Landscape-fire smoke, hereafter simply “smoke,” contributes 
over 40% of primary emissions of particulate matter with diameters smaller than 2.5 microns (PM2.5) in 

Abstract  As anthropogenic emissions continue to decline and emissions from landscape (wild, 
prescribed, and agricultural) fires increase across the coming century, the relative importance of 
landscape-fire smoke on air quality and health in the United States (US) will increase. Landscape fires 
are a large source of fine particulate matter (PM2.5), which has known negative impacts on human health. 
The seasonal and spatial distribution, particle composition, and co-emitted species in landscape-fire 
emissions are different from anthropogenic sources of PM2.5. The implications of landscape-fire emissions 
on the sub-national temporal and spatial distribution of health events and the relative health importance 
of specific pollutants within smoke are not well understood. We use a health impact assessment with 
observation-based smoke PM2.5 to determine the sub-national distribution of mortality and the sub-
national and sub-annual distribution of asthma morbidity attributable to US smoke PM2.5 from 2006 
to 2018. We estimate disability-adjusted life years (DALYs) for PM2.5 and 18 gas-phase hazardous air 
pollutants (HAPs) in smoke. Although the majority of large landscape fires occur in the western US, we 
find the majority of mortality (74%) and asthma morbidity (on average 75% across 2006–2018) attributable 
to smoke PM2.5 occurs outside the West, due to higher population density in the East. Across the US, 
smoke-attributable asthma morbidity predominantly occurs in spring and summer. The number of DALYs 
associated with smoke PM2.5 is approximately three orders of magnitude higher than DALYs associated 
with gas-phase smoke HAPs. Our results indicate awareness and mitigation of landscape-fire smoke 
exposure is important across the US.

Plain Language Summary  The pollutants from landscape (wild, prescribed, and 
agricultural) fires are expected to have an increasing impact on air quality and health in the United States 
(US) across the current century. The implications of landscape-fire smoke on the regional and seasonal 
distribution of health events and the relative health importance of specific pollutants within smoke are 
not well understood. In the present study, we assess the seasonal and regional distribution of the health 
impacts from US smoke exposure from 2006 to 2018. We also estimate the long-term health impacts 
for both fine particles (PM2.5) and gas-phase hazardous air pollutants (HAPs) in smoke. Although the 
majority of large landscape fires occur in the western US, we find the majority of deaths (74%) and asthma 
emergency department visits and hospital admissions (on average 75% across 2006–2018) attributable to 
smoke occur outside the West. Across the US, smoke-attributable asthma emergency department visits 
predominantly occur in spring and summer. The long-term health impacts associated with smoke PM2.5 
are much higher than the estimated long-term health impacts of gas-phase smoke HAPs. Our results 
indicate awareness and mitigation of landscape-fire smoke exposure is important across the US, not just in 
regions in proximity to large wildfires.
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the US (US EPA,  2017) and is responsible for a majority of non-anthropogenic exceedances in Nation-
al Ambient Air Quality Standards (NAAQS) for PM2.5 (David et al., 2021). In heavily fire-impacted parts 
of the western US, fires dominate interannual variability in PM (Spracklen et al., 2007), have led to ob-
served increases in the intensity of extreme PM2.5 events (McClure & Jaffe, 2018), and possible increases in 
summer mean PM2.5, despite decreasing anthropogenic emissions (O’Dell et al., 2019). As anthropogenic 
emissions of PM2.5 continue to decline (Lam et al., 2011; Leibensperger et al., 2012; Tagaris et al., 2007; Val 
Martin et al., 2015) and smoke PM2.5 increases (Ford et al., 2018; Li et al., 2020; Liu et al., 2016; Neumann 
et al., 2021; Yue et al., 2013), the relative importance of smoke PM2.5 for US air quality will likely increase.

Acute exposure to smoke has negative impacts on human health (Cascio, 2018; Liu et al., 2015; Reid, Brauer, 
et al., 2016, and references within), which may differ from the health effects of anthropogenic PM2.5 due to 
differences in composition and exposure. Many epidemiological studies of acute exposure to smoke PM2.5 
have observed impacts on respiratory morbidity (e.g., Aguilera et al., 2021; DeFlorio-Barker et al., 2019; Gan 
et al., 2020; Hutchinson et al., 2018; Magzamen et al., 2021; Rappold et al., 2012; Reid, Jerrett, et al., 2016). 
Impacts on mortality and cardiovascular morbidity are less certain (e.g., Reid, Brauer, et  al.,  2016), but 
evidence for these outcomes of acute smoke exposure is growing (e.g., Doubleday et al., 2020; Magzamen 
et al., 2021; Wettstein et al., 2018). Several recent works have investigated differences in asthma-related 
and respiratory hospital admissions on smoke-impacted days compared to non-smoke-impacted days and 
found larger concentration response functions for PM2.5 on smoke-impacted days (Aguilera et al.,  2021; 
DeFlorio-Barker et al., 2019; Kiser et al., 2020). A potentially different impact of smoke PM2.5 versus anthro-
pogenic PM2.5 on health is also supported by evidence from toxicological studies that suggest that smoke-
sourced PM2.5 may be more harmful than other sources of PM2.5 due to compositional differences (Wegesser 
et al., 2009). In addition to differences in particle composition, differences in exposure may also differen-
tially impact health. While there are seasonal differences in PM2.5 abundance and composition driven by 
modest variability in anthropogenic sources and atmospheric chemistry (Bell et  al.,  2007), emissions of 
PM2.5 from landscape fires are highly episodic and have distinct seasonal cycles. The seasonality of fires and 
smoke events varies by US region due to both climate and human factors (Balch et al., 2017; Brey, Barnes, 
et al., 2018; McCarty et al., 2009; Westerling et al., 2003). The implications of the unique composition and 
exposure timing of smoke-specific PM2.5 on the US healthcare system are not well understood.

Repeated acute smoke events from landscape fires contribute to the overall long-term exposure to multi-
ple health-relevant pollutants. Health effects of chronic exposure to smoke-specific PM2.5 have yet to be 
quantified. However, chronic exposure to anthropogenic PM2.5 has been associated with all-cause mortality, 
cardiopulmonary mortality, and lung cancer (Crouse et al., 2019; Krewski et al., 2009; Pope et al., 2009). In 
addition to PM2.5, wildfire smoke also contains many hazardous air pollutants (HAPs; Andreae, 2019; O’Dell 
et al., 2020; US EPA, 2015) which are compounds known or suspected to lead to serious health impacts (US 
EPA, 2015). The relative contribution of these different pollutants to potential health impacts of chronic 
smoke exposure is currently understudied.

This work leverages a growing knowledge of smoke concentrations and health responses to use a health 
impact assessment (HIA) to quantify: (a) the seasonal and spatial distribution of US asthma hospital admis-
sions and emergency department (ED) visits attributable to acute smoke PM2.5 exposure, (b) the mortality 
from chronic smoke PM2.5 exposure by state, and (c) the relative contribution of HAPs to health impacts of 
chronic smoke exposure. We build upon previous US smoke HIAs and leverage new knowledge of smoke in 
several ways. In this HIA, we use observation-based smoke PM2.5 estimates (O’Dell et al., 2019), as opposed 
to previous model-based estimates (Fann et al., 2018; Ford et al., 2018; Neumann et al., 2021). In addition, 
we apply a recent meta-analysis of the impacts of smoke PM2.5 exposure on asthma morbidity (Borchers 
Arriagada et  al.,  2019) to estimate the asthma hospital admissions and asthma ED visits attributable to 
acute smoke PM2.5 exposure. Finally, we incorporate observation-based estimates of HAPs in smoke (O’Dell 
et al., 2020) into our HIA. To our knowledge, this is the first time HAPs have been included in a smoke HIA. 
The results of this HIA will be beneficial for individual, state, and regional awareness and preparedness for 
the health burdens posed by smoke exposure.
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2.  Materials and Methods
2.1.  Smoke PM2.5 and HAPs Concentration Estimates

To conduct this HIA on smoke in the US, we estimated observation-based daily smoke PM2.5 concentrations 
by combining surface observations and satellite-based smoke plume estimates. This method was developed 
by O’Dell et al. (2019), and the data are available from 2006 to 2018. Here, we provide a brief description 
of the data. For a full description, please refer to O’Dell et al. (2019) or the metadata available in the data 
repository linked in the data availability statement. Daily average PM2.5 observations from the surface moni-
tors in the US EPA Air Quality System (AQS) were interpolated to a 15 × 15 km grid using ordinary kriging. 
Daily smoke plume information was obtained from NOAA Hazard Mapping System (HMS) smoke plume 
polygons (Brey, Ruminski, et al., 2018; Ruminski et al., 2006). These polygons indicate where smoke is likely 
present somewhere in the daytime atmospheric column according to visible satellite imagery. Combining 
the daily HMS smoke plume polygons with the gridded daily average PM2.5 concentrations, we estimated a 
non-smoke background PM2.5 as the seasonal median of the gridded PM2.5 on days without an overlapping 
HMS smoke plume. We also conduct our analysis using the seasonal mean of the gridded PM2.5 on days 
without an overlapping HMS smoke plume (results provided in Figures S1 and S2 and Table S1) and find 
this choice does not impact our main conclusions. The smoke PM2.5 was then calculated as the difference be-
tween the kriged PM2.5 and the non-smoke background PM2.5 on smoke-impacted days. On non-smoke-im-
pacted days, smoke PM2.5 was set to zero. These data have been previously used in atmospheric science, 
epidemiological, and economic studies of US smoke PM2.5 (Abdo et al., 2019; Burkhardt et al., 2019, 2020; 
Gan et al., 2020; Lipner et al., 2019; Magzamen et al., 2021; O’Dell et al., 2019, 2020).

We estimated gas-phase HAPs enhancements in smoke (hereafter “smoke HAPs”) using a previously pub-
lished method from O’Dell et  al.  (2020). Briefly, ratios of smoke HAPs to PM1 (particulate matter with 
aerodynamic diameters smaller than 1  µm) were developed using observations from the Western Wild-
fire Experiment on Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE-CAN). WE-CAN was an air-
craft-based field campaign which sampled lofted smoke plumes from large western US wildfires in summer 
2018. Ratios of smoke HAPs to smoke PM1 were developed for “young," “medium," and “old” smoke with 
approximate chemical ages of <1 day, 1–3 days, and >3 days, respectively. Here, we used the “young” ratios 
for an upper-estimate of smoke HAPs concentrations. We multiplied these ratios by 2006–2018 mean kriged 
smoke PM2.5 by grid cell for a gridded estimate of chronic smoke HAPs exposures. To perform this calcu-
lation, we made several assumptions. First, the WE-CAN ratios of HAPs to PM relied on smoke PM1 mass 
concentrations, however, our kriged estimates were of smoke PM2.5 mass concentrations. Thus, in order to 
use these HAP to PM1 ratios with our krigged smoke PM2.5 estimates, we assumed the mass concentration 
of particles with diameters between 1 and 2.5 µm was negligible. Volume size distributions of smoke aerosol 
from Bian et al. (2020) indicate that <5% of PM2.5 volume (and hence mass) exists in the diameter range of 
1–2.5 µm, thus errors due to this assumption are <5%, smaller than the relative uncertainty from the con-
centration response function. Further, we assumed that the WE-CAN HAPs to PM1 ratios are representative 
of all US smoke plumes, but smoke HAPs concentrations may vary by fuel type (e.g., Gilman et al., 2015), 
burn conditions (Sekimoto et al., 2018), and smoke age (O’Dell et al., 2020). However, as we show in the re-
sults, the estimated health impacts of smoke HAPs are much smaller than that of smoke PM2.5, such that the 
overall health estimates of smoke are not greatly influenced by our assumptions in the HAPs calculation.

2.2.  HIA of Acute Smoke Exposure

We focused the present HIA of acute smoke exposure on asthma hospitalizations and asthma ED visits as 
these outcomes are consistently associated with smoke exposure (e.g., Reid, Brauer, et al., 2016) and have 
been included in a meta-analysis of acute smoke PM2.5 exposure (Borchers Arriagada et al., 2019). We esti-
mated asthma hospitalizations and ED visits attributable to acute smoke PM2.5 exposure with the following 
health impact function,

 
Events

PM    
Population Y / e

x

0

2 5
365 1

 .
,� (1)

from Anenberg et al. (2014, 2010) for chronic PM2.5 exposure. We assumed the acute smoke health impact 
function follows the same functional form (e.g., Pratt et al., 2019). In Equation 1, Y0 is the annual baseline 
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asthma hospital admission rate or asthma ED visit rate, ΔPM2.5 is the daily smoke PM2.5 concentration, and 
  is defined,

   ln RR /X� (2)

where RR is the relative risk per ΔX increase in smoke PM2.5. We used smoke-specific RRs for asthma hos-
pital admissions and asthma ED visits from a meta-analysis of smoke PM2.5 exposure in the US (Borchers 
Arriagada et al., 2019). The meta-analysis RRs for the US are provided in the supplement of Borchers Ar-
riagada et al. (2019) and incorporate RRs from several different time lags (i.e., admissions/visits at different 
numbers of days after smoke PM2.5 exposure) but is similar in magnitude to the meta-analysis of lag-0-spe-
cific RRs for both asthma hospital admissions and asthma ED visits. We also calculated a pooled smoke-spe-
cific RR using the US studies from Borchers Arriagada et al. (2019) (Alman et al., 2016; Delfino et al., 2009; 
Gan et al., 2017; Hutchinson et al., 2018; Le et al., 2014; Reid, Jerrett, et al., 2016; Resnick et al., 2015) and 
additional RRs from eastern US fires (Rappold et al., 2012; Tinling et al., 2016) as well as two recently pub-
lished RRs based on smoke PM2.5 from western US fires (Gan et al., 2020; Magzamen et al., 2021). RRs from 
these individual studies, the pooled RR, and meta-analysis RR are plotted in Figure S3. As shown in Fig-
ure S3, we found the meta-analysis central estimate and 95th percent confidence interval (CI) lies within the 
much wider 95th percent CI of our pooled RRs estimate. Thus, despite our addition of several RRs from both 
eastern and western US fires, our pooled RR and the US-specific meta-analysis RR from Borchers Arriagada 
et al. (2019) are not statistically different. We used the US-specific meta-analysis RR in our calculations due 
to its tighter CI.

Values of the smoke-specific RRs and baseline rates used in Equations 1 and 2 are provided in Table S2. Na-
tional annual baseline rates for the year 2010 for asthma (ICD9-493) hospital admissions and ED visits were 
obtained from the Healthcare Cost and Utilization Project (HCUP). We used national estimates of base-
line rates from the National Emergency Department Sample (NEDS) and National Inpatient Sample (NIS), 
which are weighted national estimates based on state-provided data (AHRQ, 2006). Although asthma preva-
lence varies by state (BRFSS/CDC, 2019) and asthma hospitalization and ED visit rates vary by season (Ver-
dier et al., 2017), to our knowledge, a complete national database of sub-national or sub-annual asthma ED/
hospitalization rates is currently unavailable. Gridded population estimates for 2010 were obtained from 
the National Space Administration's Socioeconomic Data and Applications Center (NASA SEDAC, 2018), 
which we regridded from the original 2.5 arc-minute grid resolution to our 15 × 15 km kriged PM2.5 grid. 
Daily, krigged smoke PM2.5 estimates, described previously, are used as the smoke PM2.5 input in Equation 1. 
These data were applied in Equation 1 to estimate daily, gridded asthma hospital admissions and asthma 
ED visits attributable to smoke PM2.5 at lag day 0. The largest contributors of uncertainty in US smoke PM2.5 
HIAs are uncertainty in the shape of the concentration response function and smoke-specific PM2.5 concen-
trations (Cleland et al., 2021). We represent uncertainty in the asthma morbidity attributable to smoke PM2.5 
as the range of asthma ED visits and asthma hospitalizations estimated by calculating asthma ED visits and 
asthma hospitalizations using the lower and upper bounds of the 95% CI in the smoke-specific RRs.

We defined nine US regions following Brey, Ruminski, et al. (2018). The regions are roughly the 10 EPA 
regions; however, only contiguous US states are included and several regions are combined/altered to fol-
low likely fire and smoke patterns. The list of states in each region are provided in Table S3. Seasons were 
defined as follows: Winter: January, February, March; Spring: April, May June; Summer: July, August, Sep-
tember; Fall: October, November, December. We chose this less conventional seasonal categorization so that 
we better group regional US wildfire activity into a single season category where possible (results using a 
more standard seasonal categorization are provided in Figures S4 and S5). Gridded asthma ED visits and 
hospital admissions attributable to smoke PM2.5 were summed by each region and season. We sum by re-
gion for asthma morbidity, as opposed to by state as was done for mortality (described in the next section), 
because we found seasonal, by-state totals for each year to be too cumbersome for the main text. We present 
the seasonal fraction of asthma ED visits attributable to smoke PM2.5 by state in Figures S6–S9.

2.3.  HIA for Chronic Exposure to Smoke PM2.5

As no concentration response function for mortality specific to chronic exposure to smoke PM2.5 currently 
exists, we used the Global Exposure Mortality Model (GEMM, Burnett et al., 2018) to estimate premature 
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mortality and disability-adjusted life years (DALYs) attributable to chronic exposure to both all-source and 
smoke PM2.5. We note excess risk of mortality from chronic exposure to smoke PM2.5 may differ from all-
source PM2.5 due to differences in PM2.5 composition, toxicity, and exposure type (e.g., episodic vs. consist-
ent). However, at present, there are no studies of increased mortality risk from chronic exposure to smoke 
PM2.5, thus we assumed the GEMM is applicable to smoke PM2.5. The GEMM was developed from 41 cohort 
studies in 16 different countries on the increased mortality risk from chronic exposure to all-source ambient 
PM2.5. We estimated mortality and DALYs attributable to all-source PM2.5 from the GEMM following,

Events Population /HR    Y0 1 1 ,� (3)

where Events is mortalities or DALYs attributable to PM2.5, Population is the regridded 2010 population from 
SEDAC described in Section 2.2, Y0 is the sum of baseline mortality or DALY rates for non-communicable 
diseases and lower respiratory infections, and HR is the hazard ratio from Burnett et al. (2018). Although 
the HR from Burnett et al. (2018) was developed specifically for mortality, we assume it can be applied to 
estimate DALYs (the sum of years of life lost and years of living with disability), as with prior PM2.5 mor-
tality HRs (Burnett et al., 2014; Cohen et al., 2017). We used the all-cause mortality HR function with all 
countries included, which includes all non-communicable diseases and lower respiratory infections, with a 
threshold concentration of 2.4 µg m−3, the lowest observed concentration in the cohort studies used to de-
velop the GEMM. Baeline all-cause (sum of non-communicable diseases and lower respiratory infections) 
mortality and DALY rates for 2010 were obtained from the GBD (GBD, 2019) and are provided in Table S2. 
In Table S1, we provide estimated mortalities and DALYs for smoke PM2.5 using the five leading causes of 
death HRs from the GEMM.

The mortality and DALYs attributable to smoke PM2.5 were estimated by multiplying the mortality (or 
DALYs) attributable to all-source PM2.5 from Equation 3 by the smoke PM2.5 fraction of 2006–2018 mean 
PM2.5 at each grid cell. We follow this approach, as opposed to applying the GEMM directly to smoke PM2.5 
concentrations, due to the non-linearity of the concentration response function (the "attribution method" 
from Bilsback et al., 2020 and Kodros et al., 2016). With this method, we estimate excess mortalities and 
DALYs attributable to all-source and smoke PM2.5 for each grid cell and summed the excess mortality across 
each US state. We represent an uncertainty range in mortality and DALYs attributable to all-source PM2.5 
and smoke PM2.5 as the range of deaths (or DALYs) estimated by calculating mortality using the upper and 
lower bounds of the uncertainty range (E 2 standard error) in the GEMM concentration response function 
coefficients.

2.4.  HIA for Chronic Exposure to Smoke HAPs

To estimate DALYs attributable to smoke HAPs, we took a different approach than that used to estimate 
DALYs attributable to smoke PM2.5. The method used to estimate DALYs from smoke PM2.5, described pre-
viously in Section 2.3, relies on epidemiological concentration response functions relating exposure with 
specific diseases (e.g., Burnett et al., 2018), which are subsequently associated with an estimated number 
of DALYs (GBD, 2019; see Table S2). There are currently no concentration response functions associating 
the speciated smoke HAPs studied in this work with incidence of certain diseases in humans. Therefore, 
to estimate the DALYs attributable to smoke HAPs, we used estimates of human damage factors, expressed 
as DALYs, per annual intake of HAPs from Huijbregts et al. (2005). A full description of the calculation 
of DALYs per pollutant intake can be found in Huijbregts et al. (2005). Briefly, the DALY per intake fac-
tors were estimated through extrapolation of animal toxicity literature to estimate pollutant toxicity and 
subsequent disease incidence in humans. Disease incidence per pollutant exposure estimates were then 
combined with an estimated number of DALYs per disease. The disease per intake and DALY per disease 
factors were then combined to determine a final DALYs per pollutant intake factor. With this method, Hui-
jbregts et al. (2005) estimated DALYs per year due to cancer and noncancer effects per mass intake of 1,192 
pollutants. These DALY factors have been previously applied to estimate DALYs from HAPs in third-hand 
cigarette smoke exposure (Sleiman et al., 2014) and indoor exposure to HAPs (Logue et al., 2012). While 
these DALY factors allow us to compare health impacts of smoke PM2.5 and HAPs with the same metric 
(DALYs), we note the two methods used to estimate DALYs are very different. Although the approach based 
on concentration response functions in humans is the more precise method, it is not possible to apply such 
an approach to estimate DALYs from speciated HAPs, thus we rely on the DALY factor method.
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We applied the DALY factors to estimate DALYs per person attributable to chronic exposure to smoke HAPs 
by,

DALYs DALY / intake DALY / inta
cancer noncancer

         C V
i

i
365 kke 



i ,� (4)

similar to Logue et al., (2012). In Equation 4, Ci is the concentration of smoke HAP i described in Section 2.1, 
V is 14.4 m3 day−1, an estimated population-mean volume of air inhaled per day from Logue et al. (2012), 
and (∂DALYcancer/∂intake)i is the estimated DALYs due to cancer effects, and (∂DALYnoncancer/∂intake)i is the 
estimated DALYs due to noncancer effects, per intake of pollutant i from Huijbregts et al. (2005). Unlike the 
smoke PM2.5 DALYs calculation, there is no threshold concentration applied for smoke HAPs. Implications 
of this are discussed in the results. Of the 32 smoke HAPs with estimated concentrations from Section 2.1, 
25 have DALY factors for cancer and/or noncancer effects reported in Huijbregts et al. (2005). Huijbregts 
et al. (2005) reports the median estimate of DALY factors and provides an uncertainty estimate, ki, expressed 
as the square root of the ratio of the 97.5th and 2.5th percentiles. This value is defined such that 95% of the 
distribution of DALY factors lie within a factor of ki of the reported median estimate. We thus represent 
the 95% CI around the cancer and noncancer DALY factors as (∂DALY/∂intake)iki

−1 to (∂DALY/∂intake)iki. 
The 95% CI around the DALY factors is large, spanning several orders of magnitude, driven by large uncer-
tainties in extrapolating animal toxicity studies to humans and uncertainty in noncancer disease incidence 
and human impact (Huijbregts et al., 2005). We apply these upper and lower bounds on the 95% CI into 
Equation 4 to estimate the uncertainty bounds for our DALY estimates.

3.  Results
3.1.  Landscape-Fire Smoke PM2.5

Observation-based smoke PM2.5 estimates across the study period are presented in Figures 1a and 1b. Mean 
total PM2.5 from 2006 to 2018 and the long-term smoke PM2.5 fraction are shown in Figure S10. The 2006–
2018 mean smoke PM2.5, Figure 1a, reaches over 2 µg m−3 in heavily fire-impacted regions of the western 
US. The box plots in Figure 1b show the distribution of annual average smoke PM2.5 across all 15 × 15 km 
grid cells in the US for each year in our study period. In 2017, in several grid cells in Montana, the an-
nual average smoke PM2.5 exceeded 10 µg m−3. Across all US grid cells, the area-weighted mean annual 
smoke PM2.5 (black points in Figure 1b) is much lower ranging from 0.11 µg m−3 in 2009 to 0.73 µg m−3 in 
2018. In Figure 1b, we also provide population-weighted mean smoke PM2.5 estimates for the eastern and 
western US (orange and red points, respectively). These values were calculated as the sum of each west-
ern (eastern) US grid-cell annual mean PM2.5 multiplied by the fraction of the total western (eastern) US 
population in that grid cell. We find the area-weighted mean smoke PM2.5 across the US is often similar to 

Figure 1.  2006–2018 mean smoke PM2.5 on a 15 × 15 km grid (panel a) and the distribution of annual average smoke PM2.5 across all grid cells for each year 
(panel b). Boxes in panel (b) extend from the 25th to 75th percentile, with a bar across the box indicating the median value. Box whiskers extend from the 
minimum to maximum value. Black points represent the area-weighted mean smoke PM2.5 and orange and red points indicate the population-weighted mean 
PM2.5 in the eastern and western US states, respectively.
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the population-weighted mean smoke PM2.5 in the eastern and western US. The mean population-weight-
ed smoke PM2.5 across the full time period is higher in the western US (0.33 µg m−3) than the eastern US 
(0.26 µg m−3), however there is high inter-annual variability in both the western and eastern US popula-
tion-weighted mean smoke PM2.5. Our US-wide annual mean observation-based smoke PM2.5 is a factor 
of 2–6 lower than model-based estimates used in Fann et al. (2018), depending on the year. In addition, 
our long-term average smoke PM2.5 is lower than Ford et al. (2018) but of similar magnitude to Neumann 
et al. (2021), both model-based estimates. A direct, quantitative national or regional comparison between 
our chronic PM2.5 exposure estimates and these previous works is not possible due to a difference in time 
periods and regional definitions (or a lack of regional-level estimates). There are limitations to both mod-
el-based estimates (e.g., smoke dispersion in complex topography (Gan et al., 2017), determining plume 
injection height (Paugam et al., 2016), estimating fuel burned) and our observation-based estimates (e.g., 
lack of information on vertical smoke distribution (Brey, Ruminski, et al., 2018), sparse surface monitoring) 
that lead to uncertainties in total smoke PM2.5 concentrations.

3.2.  Spatial Distribution of Asthma Morbidity Attributable to Smoke PM2.5

In Figure 2, we show the contribution of each region to the total number and percent of asthma ED visits 
(Figure 2a) and asthma hospital admissions (Figure 2b) attributable to smoke PM2.5 in the US by year from 
2006 to 2018. There is high inter-annual variability in the total amount of asthma morbidity attributable to 
smoke PM2.5 in the US over this time period. There is similarly high inter-annual variability in smoke PM2.5 
concentrations over this same time period (O’Dell et al., 2019). Asthma ED visits attributable to smoke PM2.5 
in the US range from approximately 1,300 to 5,900 visits per year, or 0.07%–0.33% of all asthma ED visits. 
The asthma hospital admissions attributable to smoke PM2.5 contribute a similar percent (0.08%–0.37%) of 
total annual asthma hospital admissions, compared to the asthma ED visits. We find a lower total number 

Figure 2.  Asthma emergency department (ED, panel a) and asthma hospital admissions (panel b) attributable to smoke PM2.5 across the contiguous US for 
each year from 2006 to 2018. Colors represent different US regions, as indicated by the map, where darker colors represent regions in the western US and lighter 
colors represent regions outside the western US. The left y-axis on each panel represents the total number of events attributable to smoke PM2.5 and the right 
y-axis represents the percent of all asthma ED visits (panel a) or asthma hospital admissions (panel b) in the US that are attributable to smoke PM2.5. Errors bars 
represent the range of morbidities estimated using the upper and lower 95% CI bounds on smoke-specific relative risk.
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(300–1,400) of smoke PM2.5 attributable asthma hospital admissions than ED visits, due to a lower baseline 
rate in the former.

Total numbers and percent of asthma ED visits and hospital admissions attributable to smoke PM2.5 by 
year are given in Table 1 alongside previous estimates of respiratory morbidity attributable to smoke PM2.5 
in the US from Fann et al. (2018) and Neumann et al. (2021). Our estimated asthma ED visits and hospital 
admissions are considerably higher than those from Neumann et al. (2021) of 400 and 68 per year, respec-
tively. However, the estimates from Neumann et al. (2021) only account for smoke originating from fires 
in the western US and rely on different smoke-estimation methods and health impact functions than this 
work. In contrast, our estimates of asthma hospital admissions attributable to smoke PM2.5 are a factor of 
6–8 lower than the all respiratory hospital admissions attributable to smoke PM2.5 in Fann et al. (2018). A 
lower number of asthma hospital admissions compared to all respiratory hospital admissions attributable 
to smoke PM2.5 is expected, due to a lower baseline rate in the former (AHRQ, 2006).

In most years, the majority of asthma ED visits and asthma hospital admissions attributable to smoke PM2.5 
occur in non-western states (lighter colors in Figure 2, including the Midwest (MW), Great Plains (GP), 
Southern Plains (SP), Northeast (NE), Mid Atlantic (MA), and Southeast (SE) regions). There are only 2 
years during our 13-year study period when over 50% of asthma morbidity attributable to smoke PM2.5 
occurs in the western US (darker colors in Figure 2, including the Northwest (NW), Southwest (SW), and 
Rocky Mountain (RM) regions). In 2017 and 2018, 64%, and 52%, respectively, of all US asthma morbidity 
attributable to smoke PM2.5 occurred in the western states. In all other years during our study period, the 
western regions contributed on average 19% of US asthma morbidity attributable to smoke PM2.5. The high 
inter-annual variability in the total amount of asthma morbidity attributable to smoke PM2.5 is also not 
exclusively driven by the western states. In fact, in the year with the most asthma morbidity attributable to 
smoke PM2.5, 2011, less than 5% occurred in all the western states combined. This is largely driven by high-
er population densities in the East. As mentioned previously, we find the 2006–2018 population-weight-
ed mean smoke PM2.5 concentration is higher in the western states (0.33 µg m−3) than the eastern states 
(0.26 µg m−3). However, the population is much higher in the East (around 226 million people) than the 
West (around 64 million people) overall. Thus, locations typically not considered to be heavily smoke im-
pacted due to lower average concentrations of smoke PM2.5, but with large population densities, can still 
experience a significant population health impact from smoke PM2.5. In addition to population, variability 
in asthma prevalence by state (BRFSS/CDC, 2019) may influence the spatial distribution of smoke-attribut-
able asthma morbidity, however, we are unable to account for this uncertainty in the present work.

In Figure 3, we show the number and percent of asthma ED visits attributable to smoke PM2.5 within each re-
gion. In general, the total number of asthma ED visits attributable to smoke PM2.5 in the worst wildfire years 
for the western US is similar to the total number of asthma ED visits attributable to smoke PM2.5 in several 

Outcome This work Ford et al. (2018) a Fann et al. (2018) b
Neumann 

et al. (2021) c

All respiratory hospital admissions - - 3,900–8,500 350

Asthma hospital admissions 300–1,400d - - 68

Asthma ED visits 1,300–5,900d - - 400

Annual mortality attributable to chronic smoke PM2.5 exposure 6,300 (CI: 4,800–7,800) 7,000–28,000 8,700–32,000 720–1,600

Annual mortality attributable to chronic PM2.5 exposure 216,000 (CI: 163,000–266,000) 69,000–222,000 - -
aFord et al.(2018) results for the decade centered around 2000. Range given represents the range across multiple concentration response functions used in the 
study. bFann et al.(2018) results were presented annually with two concentration response functions for mortality and two odds ratios for respiratory hospital 
admissions. The given range is the full range across all years and both concentration response functions. cNeumann et al. (2021) results for health impacts of 
western wildfires on the full US (i.e., non-western wildfires, prescribed burning, and agricultural burning were not included). The given range for mortality is 
the range across both concentration response functions used. dRange across all years in this analysis (2006–2018).
US, United States.

Table 1 
Total Asthma Hospital Admissions, Asthma Emergency Department (ED) Visits, and Mortality Attributable to Smoke PM2.5 Exposure and Mortality Attributable 
to Total PM2.5 Exposure Across the Contiguous US From This Work Compared Results From Three Previous US Smoke Health Impact Assessments
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non-western regions such as the Northeast, Southeast, and Midwest. However, in the western regions, the 
percent of all asthma ED visits that are attributable to smoke PM2.5 is much higher than most other regions 
during heavy smoke years (e.g., 2017 and 2018). In the northwest region (Figure 3a), the percent of asthma 
ED visits attributable to smoke reaches over 1% in 2017 and 2018. This highlights that smoke PM2.5 has im-
portant, yet different, impacts on asthma morbidity across the US. In the western regions, where smoke con-
centrations are generally higher, but population density is lower, smoke PM2.5 contributes a higher fraction 
of regional asthma morbidity. In contrast, many eastern regions, which generally have higher population 
density but lower smoke PM2.5 concentrations see a larger total number of asthma morbidities attributable 
to smoke PM2.5, yet these constitute a smaller fraction of all regional asthma morbidities.

3.3.  Seasonality of Asthma Morbidity Attributable to Smoke PM2.5

In Figure 3, we also show the seasonality of asthma morbidity attributable to smoke PM2.5 by US region. 
We present the seasonal fraction of asthma ED visits attributable to smoke PM2.5 by state in Figures S6–S9. 
In Figure S4, we show the percent contribution of each season to regional asthma morbidity attributable 
to smoke PM2.5 summed across all years. Across the US, most smoke-attributable asthma ED visits occur 
in spring and summer when 35% and 57%, respectively, of all asthma ED visits attributable to smoke PM2.5 
from 2006 to 2018 occur. We note our seasonal attribution of smoke-specific asthma morbidity is based on 
annual asthma ED visit and hospitalization baseline rates. However, there are additional, non-smoke relat-
ed, seasonal trends in asthma ED visits and hospitalizations, leading to an annual nadir in the total number 
of asthma ED visits and hospitalizations over the summer (Pendergraft et al., 2005; Silverman et al., 2003).

The seasonality of asthma ED visits attributable to smoke PM2.5 varies by US region. In the western regions 
shown in Figures 3a, 3d and 3g, most asthma ED visits attributable to smoke PM2.5 occur in the summer 
(see also Figure S4). This is largely driven by the timing of large wildfires (e.g., Brey, Barnes, et al., 2018; 
Jin et al., 2015; Westerling et al., 2003). In the Southeast and Southern Plains, 50% and 64%, respectively, 
of all asthma ED visits attributable to smoke PM2.5 from 2006 to 2018 occur in the spring (see Figures 3i 

Figure 3.  Asthma emergency department (ED) visits attributable to smoke PM2.5 by each US region colored by season. The left y-axis represents the total 
number of asthma ED visits attributable to smoke PM2.5 in each region and the right y-axis represents the percent of region total asthma ED visits attributable to 
smoke PM2.5. Region names and abbreviations follow the same regions from the map in Figure 2.
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and 3h). This partially aligns with observed timing of local landscape fires (Brenner, 1991; Brey, Ruminski, 
et al., 2018; Dennis et al., 2002; McCarty et al., 2009). However, there is additional prescribed and agricul-
tural burning in these regions in other seasons (Brey, Ruminski, et al., 2018; Dennis et al., 2002; McCarty 
et al., 2009), which is generally missed in our smoke PM2.5 method and hence is not reflected in the asthma 
morbidity attributable to smoke PM2.5. The remainder of the regions (Midwest, Northeast, Great Plains, 
and Mid Atlantic) show a more even distribution of asthma ED visits attributable to smoke PM2.5 between 
spring and summer, with a majority of these visits occurring in summer (see Figures 3b, 3c, 3e, and 3f). 
Smoke in these regions is likely a combination of local landscape fires and transported smoke from other 
US regions and Canada (Brey, Ruminski, et al., 2018; DeBell et al., 2004; Le et al., 2014; Rogers et al., 2020; 
Wu et al., 2018). Overall, the timing of smoke-attributable asthma morbidity in the West follows the typical 
western wildfire season. However, the seasonal distribution of smoke-attributable asthma morbidity in the 
East is more mixed and varies by region, likely due to different combinations of smoke from both local and 
distant fires that follow different seasonal patterns (Brey, Ruminski, et al., 2018).

The timing and intensity of asthma morbidity attributable to smoke PM2.5 across the US presented here from 
2006 to 2018 is likely to change in the future due to changes in human-fire interactions (Balch et al., 2017; 
Kupfer et al., 2020), population, land-management strategies (Ford et al., 2018), and climate-driven changes 
in fire regimes (Abatzoglou & Williams, 2016; Barbero et al., 2015; Goss et al., 2020; Spracklen et al., 2009; 
Williams et al., 2019). Balch et al. (2017) showed that human impacts on landscape fires have expanded fire 
seasons in the US. Climate impacts may also alter fire weather and seasonality in the future, altering timing 
of extreme wildfire conditions (Goss et al., 2020; Williams et al., 2019) and seasonal availability of suitable 
prescribed burning days (Kupfer et al., 2020). In addition, intensity and frequency of large fires is projected 
to increase in the western US (Barbero et al., 2015; Spracklen et al., 2009). Notably, in 2018 and more recent-
ly in the 2020 fire season (not included in our data set), large fires had extended, dramatic impacts on air 
quality in multiple large cities. For example, in Figure 3, we show regional asthma ED visits attributable to 
smoke PM2.5 in 2018 (and 2017 for the Northwest and Rocky Mountains) were well-above most other years 
in our time period for the western regions. Based on projected changes in wildfire intensity mentioned pre-
viously, 2018 may be more representative of western wildfire seasons in the future.

3.4.  Spatial Distribution of Chronic Total PM2.5 and Smoke PM2.5 Mortalities

We estimate long-term exposure to smoke PM2.5 leads to 6,300 (CI: 4,800–7,800) additional deaths per year, 
3% of all PM2.5 mortality in the contiguous US. We present our estimates of smoke PM2.5 and total PM2.5 
mortality totals alongside previously published estimates of US mortalities attributable to smoke PM2.5 in 
Table 1. Our estimates of mortality attributable to smoke PM2.5 is generally lower than previous estimates, 
but our uncertainty range overlaps with the range of estimated mortalities presented in Ford et al. (2018), 
but not with Fann et al.  (2018) nor Neumann et al.  (2021). We note there are meaningful differences in 
methodology. Each of these previous HIAs focused on a different time period and used a different health 
impact function from this work. Ford et al. (2018) estimated mortality over the 1995–2004 decade using a 
range of relative risks and threshold concentrations, Fann et al. (2018) estimated annual mortality attribut-
able to smoke PM2.5 based on annual-average concentrations for each year from 2008 to 2012, and Neumann 
et al. (2021) estimated health impacts of western wildfire smoke on the full US over the 1995–2004 decade. 
The earlier time periods studied in Ford et al. (2018) and Neumann et al. (2021) do not overlap with our time 
period. In Table 1, we present the full range of mortality attributable to smoke PM2.5 from Ford et al. (2018) 
and Neumann et al. (2021) over all relative risks and threshold concentrations used and the range across all 
years from Fann et al. (2018). There are additional factors that may also contribute to differences observed 
between our estimates and these previous works including different smoke PM2.5 estimates, population 
estimates, and mortality rates.

Total and smoke PM2.5 mortalities differ significantly by US state. In Figure 4, we show the total annual 
number and percent of all-cause mortality attributable to total PM2.5 (Figures 4a and 4c) and smoke PM2.5 
(Figures 4b and 4d) by US state. The fraction of all mortality attributable to total PM2.5 ranges from ap-
proximately 5%–10% in each state and the fraction of mortality attributable to smoke PM2.5 ranges from 
approximately 0.1%–1.2%. In general, the fraction of mortality attributable to total PM2.5 is higher in the 
eastern states, where total PM2.5 concentrations are often higher (Figure S10a). California has the highest 
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percentage of mortalities attributable to total PM2.5, but not smoke PM2.5. 
The fraction of mortality attributable to smoke PM2.5 is higher in sever-
al northwestern states with the highest fraction occurring in Montana. 
There, we estimate 1.2% (CI: 0.9%–1.5%) of all annual mortalities from 
2006 to 2018 are attributable to smoke PM2.5 exposure. These northwest-
ern states may have additional deaths attributable to biomass burning 
due to emissions from winter wood burning. This PM2.5 source is not in-
cluded in the deaths attributable to smoke PM2.5 here, but is included in 
the deaths attributable to total PM2.5. Overall, 0.32% (CI: 0.25%–0.40%) 
of all mortalities in the western states are attributable to smoke PM2.5, 
while 0.26% (CI: 0.20%–0.32%) of all mortalities in the eastern states are 
attributable to smoke PM2.5. In terms of the total number of deaths at-
tributable to total and smoke PM2.5, we again see a heavy influence of 
population over concentration. The total number of deaths attributable 
to both smoke PM2.5 and total PM2.5 are highest in high-population states. 
We find a lower number of deaths attributable to smoke PM2.5 across all 
western states with 1,700 (CI: 1,300–2,000) deaths across the Northwest, 
Rocky Mountain, and Southwest regions, compared to 4,700 (CI: 3,500–
7,800) deaths across all eastern states. This again highlights the impor-
tant, yet different, impacts of smoke PM2.5 across the US where smoke 
contributes a higher percentage of mortality in heavily smoke-impacted 
western states and a higher total number of deaths in eastern states with 
high population density, but lower long-term population-average smoke 
PM2.5 exposure.

3.5.  Smoke-Attributable DALYs Due to Hazardous Air Pollutants and PM2.5

Figure 5 shows DALYs attributable to smoke PM2.5 and speciated gas-phase smoke HAPs in the US. We 
find the DALYs due to smoke PM2.5, 231,000 (CI: 175,000–285,000) per year, is approximately three orders 
of magnitude higher than DALYs attributable to all gas-phase smoke HAPs included in our study, 309 (CI: 
3–75,000) per year. However, there is a large amount of uncertainty in our estimates of DALYs from HAPs, 
the upper bound of which estimates DALYs from HAPs are within an order of magnitude of the DALYs 
attributable to smoke PM2.5. The majority of DALYs from exposure to gas-phase smoke HAPs is attributable 
to acrolein (85%), followed by formaldehyde (12%). However, the abundance and relative contribution of 
individual HAPs to overall HAPs health risk is known to change with smoke age (O’Dell et al., 2020). In 
addition to the HAPs listed in Figure 5, we also calculated DALYs for eight additional gas-phase smoke 
HAPs, however the DALYs due to exposure to these HAPs was <0.01 DALYs y−1, so we removed them from 
Figure 5. Figure S11 shows the DALYs estimated for all smoke HAPs in this study. In addition to the HAPs 
included here, there are additional smoke HAPs in the gas and particle phase that either were not measured 
in the WE-CAN campaign or did not have established DALY factors.

The relatively low number of DALYs attributable to smoke HAPs in Figure 5 is due, in part, to the low es-
timated HAPs concentrations in smoke. The 2006–2018 mean smoke-enhanced concentrations of acrolein 
(4.4 × 10−3 µg m−3) and formaldehyde (4.2 × 10−2 µg m−3) in the US estimated here are approximately 80% 
lower than estimated background concentrations in North America (McCarthy et al., 2006). For both acr-
olein and formaldehyde, these long-term average smoke-enhanced concentrations are below the California 
Office of Environmental Health Hazard Assessment (OEHHA) chronic reference exposure level at which 
health impacts might be expected (OEHHA, 2016; Figure S12). However, these smoke HAPs concentrations 
are likely present with additional HAPs sources which may lead to higher overall chronic exposures (e.g., 
McCarthy et al., 2006).

We acknowledge there is a high degree of uncertainty in the estimates of DALYs from HAPs and sever-
al assumptions made in the comparison of DALYs from speciated gas-phase HAPs to DALYs from PM2.5 
mass concentrations. The large uncertainty bars for DALYs from HAPs in Figure 5 are representative of the 
high uncertainty in the DALYs per HAPs intake estimates, which are approximated from animal toxicology 

Figure 4.  Total annual mortalities (in 1000s) attributable to total PM2.5 
(panel a) and smoke PM2.5 (panel b) in each state. Panels c and d show the 
percent of all mortalities in each state attributable to total PM2.5 and smoke 
PM2.5, respectively.
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studies (Huijbregts et al., 2005). There is additional uncertainty, not represented in Figure 5, from the smoke 
HAPs concentration estimates from O’Dell et al. (2020) discussed in Section 2.1. We are unable to quantify 
the magnitude of this uncertainty. However, we tested the sensitivity of our results to uncertainty in HAPs 
concentration estimates by re-calculating DALYs from HAPs using the 2.5th and 97.5th percentile of HAPs to 
PM ratios from O’Dell et al. (2020), which resulted in estimates of 93 and 635 DALYs from HAPs in smoke, 
respectively. This range in estimated DALYs is much smaller than the uncertainty range in DALYs due to 
uncertainty in the DALYs per HAP intake from Huijbregts et al. (2005). There is a large difference between 
the methods used to estimate HAPs DALYs, which are toxicology-based, and PM2.5 DALYs, which rely on 
an epidemiology-based concentration response function for mortality, that may impact DALY estimates and 
uncertainties. In addition, because the DALYs attributable to smoke PM2.5 are estimated from an epidemio-
logically-based concentration response function, the smoke PM2.5 DALY totals (and mortalities) presented 
here may already incorporate health impacts of compounds co-emitted with PM2.5. Smoke PM2.5 may also 
include particle-phase HAPs, such as polycyclic aromatic hydrocarbons (PAHs; Andreae, 2019), which may 
impact the overall toxicity of PM2.5 mass concentrations in smoke.

3.6.  Limitations

There are several limitations of our observation-based smoke PM2.5 and HAPs exposure estimates which 
may impact the present study. First, the HMS smoke product can omit the smoke from small short-lived 

Figure 5.  US-total disability-adjusted life years (DALYs) attributable to smoke PM2.5 and gas-phase smoke Hazardous 
Air Pollutants (HAPs) each year. PM2.5 DALY error bars represent the range of DALYs estimated using ±2 times the 
standard error for the coefficients in the GEMM health impact function. HAPs DALY error bars represent the range 
of DALYs estimated using the upper and lower bounds of the 95% CI for the DALY factor for each pollutant. HAPs 
associated with fewer than 0.01 DALYs per year have been removed from this figure. The full figure with all HAPs is 
available in the supplement.
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fires, likely leading to an underestimate of smoke in the Southeast and Midwest where small fires contrib-
ute a large fraction of burned area (Brey, Ruminski, et al., 2018). In addition, HMS relies on visible satellite 
imagery, which is only available during daylight hours, and dilute smoke is more difficult to identify visually 
than concentrated smoke, thus the HMS analysis is a lower bound on daytime smoke extent across the US. 
As there is no HMS information overnight, the overnight portion of our 24-h average PM2.5 is more uncer-
tain. Smoke mixed with PM from other sources is similarly difficult to positively identify. This issue is of 
particular relevance in the southeastern US. In our smoke PM2.5 estimates, small or dilute smoke plumes 
could be incorporated into the “non-smoke” days and artificially increase the non-smoke PM2.5 background 
estimate. Finally, our method of estimating smoke PM2.5 has no independent concentration information 
where there are no monitoring sites. However, monitors are typically in locations with a high population 
density, thus this limitation would have less impact on a national HIA.

There are also several limitations to our health impact assessment of smoke PM2.5 and smoke HAPs. As 
mentioned previously, smoke PM2.5 and PM2.5 from urban sources have a different toxicity (Wegesser 
et  al.,  2009). It is currently unclear how this may affect health outcomes of chronic exposure. The dif-
ferential long-term impacts of consistent (e.g., ambient urban) versus episodic (e.g., smoke plumes) ex-
posures are also currently unknown. There are additional challenges with separating mortalities due to 
short-term exposure versus long-term exposure for an episodic source, like landscape-fire smoke. Smoke 
PM2.5 DALYs (and mortalities) may already incorporate health impacts from co-emitted species including 
HAPs, thus DALYs attributable to smoke PM2.5 and smoke HAPs are not mutually exclusive. In addition, 
the two methods used to estimate DALYs attributable to non-speciated smoke PM2.5 and speciated gas-phase 
smoke HAPs are very different with unique uncertainties and assumptions, which may differentially impact 
estimated DALYs. There are many uncertainties in any HIA due to uncertainties in baseline rates, exposure, 
and health impact functions, among other factors.

4.  Conclusions
In the present work, we used an HIA as a tool to understand (a) the distribution of health events due to 
acute and chronic smoke exposure across US states and EPA regions, and (b) the relative contribution of 
gas-phase smoke HAPs and smoke PM2.5 to chronic-exposure health outcomes. In this study, we built on 
previous HIAs of US smoke PM2.5 (Fann et al., 2018; Ford et al., 2018; Neumann et al., 2021) to conduct 
the first HIA of smoke with observation-based smoke PM2.5, sub-annual temporal resolution of asthma 
morbidity attributable to smoke PM2.5, and chronic impacts of smoke HAPs. We show, by number, that 
more asthma morbidities due to acute smoke exposure occur in non-western US regions in most years. In 
heavily fire impacted years, there is a higher contribution of smoke PM2.5 to asthma morbidities in the West 
(over 1% of asthma ED visits) compared to the East (maximum of 0.3%–0.6%). The seasonality of these 
morbidities varies by region, but nationwide morbidities attributable to smoke PM2.5 predominantly occur 
in spring and summer. We show the highest number of deaths for smoke PM2.5 occur in the most populous 
states, while the highest fraction of deaths attributable to smoke PM2.5 (up to 1% of all mortality) occur in 
the northwestern states. In addition, we provide the first, to our knowledge, estimates of DALYs from smoke 
PM2.5 and speciated gas-phase HAPs. We show smoke PM2.5 is associated with approximately 103 times the 
number of DALYs from gas-phase smoke HAPs concentrations, but there remains high uncertainty in the 
health implications of HAPs exposure.

Smoke plumes contain many health-relevant pollutants. Based on our results, smoke PM2.5 remains an 
important indicator of smoke-specific health impacts. However, there is a high degree of uncertainty in 
the potential human health impacts of many HAPs in smoke. Further, in addition to the HAPs included in 
our study, there may be many HAPs in smoke in the gas and particle phase not included in our work that 
contribute to the observed health impacts of smoke exposure. More research is needed to understand the 
concentration and health impacts of these speciated compounds in smoke as well as the subsequent impacts 
of multi-pollutant exposure.

As wildfires and smoke-attributable PM2.5 continue to increase (Ford et  al.,  2018; Li et  al.,  2020; Liu 
et al., 2016; Neumann et al., 2021; Yue et al., 2013), it is important to understand and prepare for health 
impacts of smoke. Our results indicate the impacts of smoke on public health extend across the US and are 
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not constrained to the western states during the typical fire season. Therefore, it is important for the entire 
US population to have increased awareness of wildfire smoke and knowledge of when/how to mitigate 
exposure. This is especially important for those in states not typically thought of as fire-impacted and/or far 
downwind of large fires, who may be less aware of the presence of smoke. Messaging and preparedness for 
smoke in each region should focus on local seasonality in smoke-attributable health events. The assessment 
of the seasonality of these acute events by region presented here may help states prepare for the potential 
increasing burden posed to the healthcare system by smoke. Our findings also underscore the need for 
continued development and more active use of national scale smoke forecasts to increase awareness and 
capacity to prepare for the impact of smoke in downwind regions. It will be important to understand how 
smoke sources and seasonality may change by region in the future due to climate change and human influ-
ence on fire ignition and suppression.
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