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ARTICLE INFO ABSTRACT

Handling Editor: Dr. Hanna Boogaard Particularly in rural settings, there has been little research regarding the health impacts of fine particulate matter

Keywords: (PM, 5) during the wildfire season smoke exposure period on respiratory diseases, such as influenza, and their
Air pollution associated outbreaks months later. We examined the delayed effects of PM, s concentrations for the short-lag
MODIS (1-4 weeks prior) and the long-lag (during the prior wildfire season months) on the following winter influenza

PMy s season in Montana, a mountainous state in the western United States. We created gridded maps of surface PM, 5
Respiratory health for the state of Montana from 2009 to 2018 using spatial regression models fit with station observations and
Influenza Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical thickness data. We used a seasonal
Wildfire Smoke - . . . . . . e s
quasi-Poisson model with generalized estimating equations to estimate weekly, county-specific, influenza counts
for Montana, associated with delayed PM, 5 concentration periods (short-lag and long-lag effects), adjusted for
temperature and seasonal trend. We did not detect an acute, short-lag PM, s effect nor short-lag temperature
effect on influenza in Montana. Higher daily average PM, s concentrations during the wildfire season was po-
sitively associated with increased influenza in the following winter influenza season (expected 16% or 22%
increase in influenza rate per 1 pg/m? increase in average daily summer PM, 5 based on two analyses, p = 0.04
or 0.008). This is one of the first observations of a relationship between PM, 5 during wildfire season and
influenza months later.

1. Introduction

The last two decades have seen a dramatic increase in wildfire ac-
tivity across much of the western United States (US), a trend that has
been attributed to decreasing summer precipitation and increasing
temperatures (Westerling et al., 2006; Abatzoglou and Williams, 2016;
Holden et al., 2018). Communities impacted by smoke from nearby and
distant wildfires experience high episodic exposures to fine particulate
matter (aerodynamic diameter < 2.5 um; PM, s) with concentrations
often exceeding 24-hour ambient air quality standards for extended

* Corresponding author.

periods (Liu et al., 2015). While recent studies have shown air quality
improving for the contiguous US from the reduction of industrial and
vehicular emissions (McClure and Jaffe, 2018; O’Dell et al., 2019), air
pollution in wildfire-prone areas, particularly in the mountain west
region of the US, has increased and is projected to further worsen due to
climate-mediated increases in wildfire activity (Yue et al., 2013; Liu
et al., 2016; Ford et al., 2018).

PMS, 5 is widely known to have significant adverse effects on human
health (US EPA 2009; Anderson et al., 2012; Kim and Kabir, 2015), and
several studies of PM, s during wildfires have found similar positive
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associations with respiratory effects, including increased hospitaliza-
tion and medication use for asthma, increased urgent care visits for
cardiopulmonary outcomes and increased mortality (for reviews see Liu
et al., 2015; Reid et al., 2016; Adetona et al., 2016). Adverse respiratory
outcomes associated with wildfire exposure also include hospitaliza-
tions and urgent care visits for respiratory infections, pneumonia and
bronchitis (Reid et al., 2016). To date, all studies of wildfires have fo-
cused on acute health effects with analyses typically not extending
beyond a few days lag period.

Wintertime influenza offers an opportunity to evaluate the potential
for longer-lag delayed effects of PM, s associated with smoke from
wildfire events. Traditionally, meteorological factors in temperate
countries, such as low temperatures and humidity, have been shown to
contribute to the risk of influenza outbreaks (Tamerius et al., 2013) and
are well correlated with the seasonal changes in the US (Shaman et al.,
2010). Recent studies have begun to investigate the associations of
PM, 5 and influenza. For example, a study in Beijing, China, reported
the association between the delayed impact of short-term exposure of
PM, s and monthly influenza cases (Liang et al. 2014). A follow up
study found correlations between PM, 5 exposure and daily influenza
risk by age group in Beijing, China, suggesting a 1-day optimal lag ef-
fect (Feng et al., 2016). A more recent study showed consistently in-
creased odds of healthcare encounters for influenza for elevated PM, 5
exposure estimates averaged across several lag periods, 0-28 days
(Horne et al., 2018). However, to date and particularly in rural settings,
there has been little research regarding the health impacts of PM, 5
during the wildfire season smoke exposure period on influenza occur-
rence months later.

While the burden of influenza can vary from season to season, it is
estimated that between 9 and 49 million cases of influenza occur each
year in the United States. Of these, an estimated 140,000-960,000
hospitalizations and up to 79,000 deaths due to influenza occur each
year (www.cdc.gov/flu/about/burden/index.html). In addition, a 2007
review of the economic burden of influenza determined that direct
medical costs average around $10.4 billion (Molinari et. al., 2007). In
the western US state of Montana, approximately 10,000 cases of in-
fluenza are reported each season (approximately October — May;
https://www.cdc.gov/flu/about/season/flu-season.htm), but it is likely
that the actual number is higher as not all individuals who are infected
will seek medical care (MT DPHHS data). In Montana, influenza is as-
sociated with approximately 900 hospitalizations and 60 deaths each
year (www.cdc.gov/flu/about/burden/index.htm). Since influenza
cases are monitored closely by state and federal agencies and the per-
iods between wildfire activity and influenza transmission are offset by
weeks to months, we have the opportunity to investigate the potential
of PM, 5 exposure from wildfire season months to impart impacts weeks
to months after exposure.

Wildfires have been identified as the dominant source of elevated
surface PM,s across the Northern Rocky Mountain region (Idaho,
Montana, and Wyoming) during the western US wildfire season (Liu
et al., 2016; Brey et al., 2018). Here, we define wildfire season as July 1
-September 30. This time period accounts for greater than 90% of an-
nual wildfire emissions across the region (Urbanski et al., 2017, 2018).
Inter-annual differences in wildfire activity and wildfire PMs 5 emis-
sions result from variability within this time window. Even in the most
active fire years, fire burned area and emissions outside July — Sep-
tember are a minimal fraction of the total in the Northern Rocky
Mountain region (Urbanski et al., 2018). In Montana, wildfires are the
primary PM, s emission source during the western US wildfire season
(Urbanski et al., 2018). The dominant non-wildfire emissions of pri-
mary annual PM, s within Montana were dust from agriculture and
unpaved roadways (53%) and prescribed fires (27%), while residential
fuel combustion accounted for ~2%, according to the Environmental
Protection Agency (EPA) triennial National Emission Inventories (NEI)
of 2011 and 2014 (www.epa.gov/air-emissions-inventories/national-
emissions-inventory-nei).
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The major contributor to short-lag PM, s exposures during flu
season in Montana is biomass smoke exposure generated from wood
stoves used for heating throughout the winter months. PM, 5 source
apportionment modeling has identified wood smoke contributions to be
between 56 and 77% of the ambient wintertime PM, s in multiple
communities throughout western Montana (Ward and Lange 2010).
Other contributions include dust (1-4%), ammonium nitrate from
heavily fertilized agricultural fields and livestock waste (10-20%),
sulfate (0-5%), diesel (0-5%), automobiles (0-4%), and unexplained
sources (0-4%) (Ward and Lange 2010).

The objective of this study was to evaluate associations between
PM, 5 and influenza counts at the county level in Montana. Specifically,
we developed spatio-temporal PM, s maps to estimate PM, 5 effects for
two different time frames: (1) PM, 5 exposure 1-4 weeks before influ-
enza cases, hereafter referred to as short-lag PM, s and (2) PM, 5 during
the wildfire season 1-10 months before influenza cases, hereafter re-
ferred to as long-lag PM, 5. We then evaluated associations between the
delayed effects of PM, 5 for each time frame on influenza counts for
counties in Montana for 2010-2018, adjusted for temperature and
seasonal trend, in a quasi-Poisson model framework.

2. Methods
2.1. Influenza data

In this time-series analysis, influenza counts in Montana were pro-
vided by the Montana Department of Public Health and Human
Services. The data used in this study are weekly county-level case
counts of positive diagnoses of influenza from all reporting sources,
including laboratory confirmations, hospitalizations, and clinical diag-
noses. Influenza cases in those of all ages are reported. The Centers for
Disease Control do not state the estimated under-reporting of influenza,
but do acknowledge that it is largely under-reported (www.cdc.gov/
flu/about/burden/how-cdc-estimates.htm). Six small population coun-
ties (Musselshell, Petroleum, Judith Basin, Wheatland, Golden Valley,
and Fergus) were grouped into what is known as the ‘Central Montana
Health District’ (CMHD). The CMHD and all 50 other Montana counties
were included in this study for a total of 51 regions which will be re-
ferred to as counties for simplicity. In total, the influenza data for
Montana produced 51 counties over 8 years or 408 ‘clusters’ of time
series. Mean, minimum, and maximum case counts of each week for all
counties are shown in Fig. 1A. Fig. 1B depicts flu incidence per 1,000 in
each county for an example flu season period (October 1, 2015 — April
30, 2016) for each county in Montana.

In temperate climates and during the northern latitude summer
months (May-August), influenza counts are at their minimum, whereas
winter months are the predominant season for infection due to cold
temperatures, low humidity, and increased indoor crowding
(Finkelman et al. 2007; Cauchemez et al. 2008; Tamerius et al. 2013).
We considered two datasets for our modeling purposes. For our first
dataset, we excluded flu counts from May 1 — August 30, as these pri-
marily contained either unreported cases or O counts. This dataset
hereafter referred to as the ‘complete’ dataset (n = 12,474) had an
average flu season length of 31 weeks. Our second dataset accounted
for the start and end of each flu season, further reducing the zero counts
in the flu data. The second dataset hereafter referred to as the ‘reduced’
dataset (n = 6,308) was subset into vectors of flu counts with a single
leading zero and trailing zero for each flu season within each year and
each county. The reduced data set had an average flu season length of
15.5 weeks.

2.2. PM s model for Montana
We used daily PM, s measurements from air quality monitoring

stations, combined with satellite retrievals of aerosol optical thickness
from the Moderate Resolution Imaging Spectroradiometer (MODIS) to
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Fig. 1. (A) Total weekly influenza cases plotted for all Montana counties, 2010-2018. (B) Flu season incidence (per 1,000) for each county in Montana, 2015-2016
with the ‘Central Montana Health District’ (CMHD) shown with dash. (C) Average weekly PM, s (ug/ms) plotted for each county in Montana, 2010-2018. (D)
Average PM, 5 during the wildfire season (July 1 - September 30) for each county in Montana, 2015.

produce gridded maps of daily PM, s concentrations across the state of
Montana from 2009 — 2018. Mean daily PM, 5 were retrieved from the
EPA (https://www.epa.gov/outdoor-air-quality-data) and used as a
response variable in the models. One hundred and seven stations within
a domain bounded by —100 to —120 degrees longitude and 42 — 49
degrees latitude were used for model fitting. Counts of daily observa-
tions available for each station varied from 1% to 100%, with a mean of
21% and counts of the number of available observations by day ranged
from 10 to 57, with a mean of 38. The 1 km MODIS aerosol optical
thickness (AOT) product, developed using the MAIAC algorithm
(Lyapustrin et al. 2018) was used as predictor. Quality assurance layers
provided for each image were used to screen pixels containing snow or
clouds, and only the highest quality observations were retained for
analysis. Fig. A1 shows the correlation of the AOT data with the PM, 5
EPA station data. Use of remotely sensed products is particularly
challenging in Montana, due to image contamination by clouds and
snow. More than 90% of data were missing during winter months (Fig.
A2). Therefore, satellite AOT data were only used in the models from
June-October (but see comparison of models for November-May in
Appendix). We infilled missing observations in the June-October AOT
data using probabilistic Principal Components Analysis (Stacklies et al.
2007).

We used Bayesian spatial linear models implemented in the
‘spBayes’ package (spLM; Finley et al. 2015) in R version 3.5.3 (R Core
Team 2019) to estimate daily PM, s concentrations. We fit a unique
model for each day, and predicted the fitted model to a 12 km grid.
Aerosol optical thickness was used as a predictor in this model along
with an exponential covariance model. Uninformative priors were used
for the regression parameters, a uniform prior was used for the spatial
decay parameter with support for effective ranges between 5% and 90%
of the maximum inter-point distance, and uninformative inverse

gamma priors were used for the covariance sill and nugget (o> and t2)
parameters. For November-May days, we used thin plate spline re-
gression (TPS) in the R package ‘fields’ (Nychka et al., 2017) to inter-
polate daily PM, s observations without any spatial covariates. This
decision was made because of the high proportion of missing MODIS
data in winter. Here, a spline regression model was fit for each date
using the latitude and longitude of each station and predicted the model
to a 12 km grid. We evaluated both the spLM and TPS models using a
leave-one-out cross validation approach. Here, for every model date
each observation was withheld. A model was fit using the remaining
observations, and then predicted to the withheld observation. This
procedure was repeated for each observation and each date and error
statistics were retained for all days. The overall model fit for the
summer wildfire season model was reasonably strong, with Mean Ab-
solute Error of 2.79 (ug/m?’) and 2 = 0.66 (Fig. A3a). The accuracy of
the thin plate spline model, fit without the benefit of MODIS AOT data
was not as strong as expected, with Mean Absolute Error of 3.11 (ug/
m®) and r* = 0.37 (Fig. A3b). Daily gridded PM, 5 estimates were
combined into weekly grids using the mean, and then extracted for
county in Montana also using the mean.

The resulting weekly PM, s time series for all counties is given in
Fig. 1C. For this study, we are primarily interested in evaluating two
possible functions of PM, s in relation to influenza: (1) a long-lag effect
experienced primarily from PM, s during wildfire season, and (2) a
short-lag effect experienced primarily from biomass smoke exposure
(e.g., Ward and Lange, 2010). We tested multiple such functions to
express these different kinds of PM, 5 periods and effects as summarized
in Table 1. For the long-lag effects, we used the average daily PM, s
concentration for the months July 1 — September 30 preceding the flu-
season, when PM, s density spikes due to wildfires, with the intent of
estimating average PM,s concentrations during wildfire season. An
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Table 1
Short-lag and long-lag PM, s variables considered.
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Variable Name

Description

PM, s Variables Tested Long-lag Effects  Daily average PM, 5 during wildfire
season

(A) n week lag (n = 1,2,3,4)

(B) n week moving window sum

n =234

(C) Daily average PM, s during flu

season

Short-lag
Effects

Total PM, s from months preceding flu-season (July 1 — September 30) divided by
wildfire season total days (91 days)

Lag PM, 5 up to n weeks before current week of influenza

Total PM, s up to n weeks before current week of influenza divided by n weeks

Total PM, 5 over entirety of flu-season (October 1 — April 30) divided by flu-season total
days

Table 2
Model summary for each variable and dataset.

Complete Dataset (n = 12,474)

Reduced Dataset (n = 6,308)

Term Estimate Robust SE pval Term Estimate Robust SE pval
Sine, Cosine Varies Varies < 10° Sine, Cosine Varies Varies < 10°
Temperature Lag —0.0014 0.0030 0.650 Temperature Lag 0.0001 0.0030 0.979
Daily Long-Lag PMy s 0.1995 0.0752 0.008 Daily Long-Lag PMy 5 0.1470 0.0724 0.042
Daily Short Lag PM; 5 —0.0459 0.0464 0.323 Daily Short Lag PM 5 —0.0407 0.0483 0.399

example long-lag PM, 5 for each Montana county in 2015 is shown in
Fig. 1D. Fig. A4 shows how severe the wildfire seasons were each year
in Montana using total area burned. For the short-lag effects, we looked
at three different PM, 5 variables: (A) a lag in PM, s up to n weeks
before current week of influenza, (B) a moving window daily average
PM, 5 up to n weeks before current week of influenza, and (C) a daily
average PM, 5 concentration over the entirety of flu-season.

2.3. Statistical analysis

The associations between weekly counts of influenza cases and the
different PM, 5 effects were examined using the following quasi-Poisson
regression model weighted by county population for all counties si-
multaneously:

6
log(u, ;) = log(Population, ;) + S, + Z BF(t, k) + B, Temperature,_,
i=1
60

+ ByLongLagPM2.5,, + fByShortLagPM2.5, ; + Z B, County,
i=10

(€8]

where t is the week index, t = 1, 2, ..., 435 weeks from 2010-Jan-03 to
2018-May-31, excluding weeks outside of the flu season, k is the county
index, k = 1, 2, ..., 51 counties as earlier defined, | is the expected
influenza count at time t in county k, assuming ., ~ Exponential
Family(0), Population, . is the population in county k in week t, entering
the model as an offset allowing an influenza rate response, Temperature,.
1,k is the maximum daily temperature (in deg. Celsius) extracted using
250 m resolution gridded temperature data (Holden et al., 2018) in
county k in week t-1, LongLagPM2.5 . is the long-lag PM, s daily
average from the previous wildfire season as described in the previous
section for county k relative to week t, ShortLagPM2.5 . is the short-lag
PM, 5 effect as described in Table 1 for county k relative to week t, F;
(k) is the i Fourier seasonal term (i = 1,2,3 for Sine and i = 4,5,6 for
Cosine) for county k in week t, and Countyy is a county indicator (1 if
county k and O otherwise). Notice that the first seven terms in the model
(parameterized by f;, B, ..., B7) are all variables regularly associated
with influenza dynamics (e.g., Imai et al., 2015).

A generalized estimating equation (GEE) was used to estimate the
model parameters for this quasi-Poisson generalized linear model to
address any residual temporal autocorrelation and uncertainty in the
covariance structure of the flu counts. An autoregressive (AR(1)) cov-
ariance structure is assumed for the GEE to account for the weekly

dependence in flu counts within each county-year cluster (51 coun-
ties X 8 years = 408 county-year clusters). The model for influenza
rate (specified as influenza count with population as an offset) given in
Eq. (1) was applied simultaneously to all counties in Montana and for
the two datasets described in the previous section (complete and re-
duced), and basic statistical inference performed on the coefficients
using Huber-White robust standard error estimates to account for un-
certainty in the quasi-Poisson correlation structure. All analyses were
performed using the geem and glm function in R (version 3.5.3; R
Development Core Team) with a quasi-Poisson family to account for
overdispersion, and each case weighted by the county population.

3. Results
3.1. Long-lag PM, s impacts on influenza

Average daily long-lag PM,s concentration (averaged over the
period July 1 - September 30 during the previous wildfire season) was
positively associated with increased influenza rate for both the com-
plete and reduced datasets (p = 0.008 and p = 0.042, respectively) as
shown in the model summary provided in Table 2. The estimated model
coefficients are 0.1995 (SE = 0.0752) and 0.1479 (SE = 0.0724) for
the complete and reduced datasets, respectively. For the complete da-
taset, we expect influenza incidence to increase by a factor of exp
(0.1995) = 1.22 per 1 pg/m? elevation in average daily wildfire season
PM, 5 exposure (95% CI: (1.05, 1.41)). For the reduced dataset, we
expect influenza incidence to increase by a factor of exp
(0.1470) = 1.16 per 1 pug/m?> elevation in average daily wildfire season
PM, 5 exposure (95% CI: (1.01, 1.33)). We note that these estimated
parameters reflect population-based changes in influenza rate taken on
average.

3.2. Short-lag PM, 5 impacts on influenza

Moving window daily average short-lag PM, s two weeks prior to
the current week showed no association with influenza rate for the
complete dataset (p = 0.323) and the reduced dataset (p = 0.399)
(Table 2). Regardless of short-lag method chosen for the model
(Table 1), no association was observed. Individual county-specific
models indicated a positive association in 13-23 of the 51 counties,
depending on which short-lag PM, 5 variable was used, but no overall
effects were observed (Table A1l; Figs. A5-A6).
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3.3. Temperature impacts on influenza

The average maximum temperature (degrees Celsius) in the pre-
vious week showed no association with influenza rate for the complete
dataset (p = 0.650) and the reduced dataset (p = 0.979) (Table 2).
Individual county-specific models indicated that 39 out of 51 Montana
counties show a negative albeit insignificant relationship between
temperature and influenza counts (Fig. A7), the direction of which is
consistent with all previous literature on this topic (e.g., Tamerius et al.
2013).

3.4. Residual autocorrelation

There was strong evidence of temporal autocorrelation within the
county-year clusters in the influenza count model residuals (Breusch-
Godfrey test, p = 0.0004). To address this residual autocorrelation,
robust Huber-White standard errors under an AR(1) covariance struc-
ture were used in the GEE modeling framework to assess the sig-
nificance of model predictors.

4. Discussion

We found that higher average PM,s concentrations during the
wildfire season positively associated with increased influenza in
Montana counties in the following winter flu season. Individual county-
specific models further support this result, showing long-lag PM, s po-
sitively associating with wintertime influenza in 50 out 51 counties
(Table A1; Figs. A5-A7). Although there are studies that report the
correlation between short-lag exposure of PM, s and influenza cases
(Liang et al., 2014; Feng et al., 2016; Horne et al., 2018), our study
suggests one of the longest lag associations observed for communities
impacted by wildfires. Wildfire season for Montana (and much of the
intermountain West) occurs between July - September with corre-
sponding peak levels of PM, 5. Flu season spans October — April, with
peak flu cases typically occurring in January. Thus, average daily PM, 5
concentrations during wildfire season months was observed to be po-
sitively associated with flu 1-10 months later, even after accounting for
seasonal, temperature, and autocorrelative factors.

Past studies modeling the effects of PM, 5 during wildfire episodes
on respiratory outcomes have typically looked at lagged associations of
less than 5 days (Liu et al., 2015; DeFlorio-Bake et al., 2019). However,
a recent study showed consistently increased odds of healthcare en-
counter for influenza for elevated PM, s exposure estimates averaged
across several lag periods, 0-28 days (Horne et al., 2018). We also in-
cluded a short-lag variable in our model using different methods to
account for the effect of PM, 5 immediately preceding influenza rates
(1-4 weeks; Table 1). Surprisingly, these results were less consistent
than the long-lag PM,, 5 variable, and we found little support for a short-
lag PM, s effect on influenza. Individual county-specific models run
with each different short-lag PM, 5 variable in Table 1 are compared in
the Appendix (Table Al; Figs. A5-A7) and further corroborate this
finding. Depending on which PM, s short-lag variable used, 13-23 of
the 51 counties indicated a positive association with short-lag PM, 5
and influenza counts with at most 7 counties being significant
(p < 0.05). The inability to separate out the various contributing
factors to short-lag PM, 5 in the winter months (i.e., woodsmoke, other
industrial pollutants) could be one reason our model was not able to
find a short-lag PM, 5 association with flu. Several studies have eval-
uated specific PM components and cardio-respiratory outcomes, but
findings have been inconsistent in linking isolated PM factors or sources
to specific outcomes (Stanek et al., 2011). To our knowledge no such
studies have evaluated PM component or PM source with respect to
influenza, and this would be a potential area for further exploration.

Although our modeling was able to partially explain effects of long-
lag PM, 5 concentrations on Montana’s counties, finer scale data could
help reveal more spatially resolved details. Our modeling used PM, s
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maps produced at relatively coarse (12 km) spatial resolutions and
aggregated to the county level. Future research should explore variation
at finer resolution. Of particular concern in western rural states is the
scarcity of air quality monitoring stations, which provide the data
needed to deliver accurate respiratory health warnings and predictions
to the public, as well as to provide the data to better understand the role
air pollution has on respiratory diseases. In the intermountain west, the
sparsity of air quality monitoring stations is further complicated by the
region’s complex terrain which likely contributes to significant het-
erogeneity in air pollution levels across communities (Armstrong,
1998). Furthermore, it is likely that during the wildfire season inver-
sions and drainage flows may lead to highly variable smoke exposure.
Many areas of Montana and the intermountain west in the wintertime
experience an increased risk of poor air quality due to cold-air inver-
sions, trapping air pollutants in mountain valleys where most towns and
residents are located (Ward and Lange 2010; Holden et al., 2011). Air
quality monitoring stations are often located to represent worst-case
exposures for the largest concentration of people or sited to capture
background exposure. For example, in 2018 there were 19 sites in the
Montana network that monitored PM, s (13 = Population Exposure,
5 = Background Exposure, and 1 = Source Impact; https://www3.epa.
gov/ttnamtil/files/ambient/pm25/qa/vol2sec06.pdf). Regardless, it is
unlikely that the single air monitor sites in many Montana communities
provide an accurate representation of pollution exposure and could be
missing much of the spatial patterning in PM, s, as suggested by other
urban area focused studies (Tunno et al. 2016). Thus, improved spa-
tially resolved maps of PM, s would enhance understanding of parti-
culate matter impacts on public health during both the winter and
wildfire season. Such maps would also provide the spatial and topo-
graphically resolved data needed to identify fine scale PM, s effects on
specific respiratory diseases, such as influenza.

There are several potential factors that are relevant to influenza risk
that were not addressed in our study. For example, previous studies
included sociodemographic factors and one study from Australia found
that wealthier communities with lower levels of unemployment ex-
perienced greater flu activity than those less advantaged areas (Huang
et al., 2017). Other studies have found that school calendars may play a
role in influenza outbreaks, suggesting that closing schools could be
effective in limiting the spread of influenza outbreaks (Chu et al.,
2017), also contributing to the hypotheses on indoor crowding and
increased person-to-person contact (Cauchemez et al., 2008). Further-
more, our model did not include vaccination rates (e.g., Baselga-
Moreno et al., 2019), influenza strain, distance to airports (e.g., Hooten
et al., 2010), and possible important determinants influenza in for rural
states, such as healthcare access, or any other sociodemographic or
economic variables, all of which could influence influenza transmission.
Future studies could explore the interactions of virus-specific, climate,
sociodemographic, and PM,s variables. Finally, we note that our
models did not explicitly account for uncertainty in the particulate
matter model. This uncertainty was higher in winter months, where
satellite data were unavailable, and may have contributed to the lack of
any relationship between short-lag PM exposure and influenza.

While our study supports a link between long-lag PM, s during
wildfire season and wintertime influenza, the mechanisms underlying
this relationship are complex, and beyond the scope of this study.
Future work using in vivo and in vitro studies could be conducted to
explore these underlying mechanisms for either viral etiology and/or
host susceptibility. For example, some animal studies have looked at
wood smoke particles’ sustained immune suppression effect (Samuelson
et al, 2009; Migliaccio et al, 2013), showing this type of PM having a
24 h sustained effect on respiratory bacterial infections. Other animal
models suggest that the role of lagged PM exposure on influenza risk
could occur via diminished capacity of pulmonary macrophages to se-
crete IL-6 and IFN-f (Ma et al. 2017). Ma et al. 2017 provide support for
a 2-week exposure to outdoor PM, 5 from Shanghai, China, leading to
decreased resistance to influenza via altered immune responses.


https://www3.epa.gov/ttnamti1/files/ambient/pm25/qa/vol2sec06.pdf
https://www3.epa.gov/ttnamti1/files/ambient/pm25/qa/vol2sec06.pdf

E.L. Landguth, et al.

Predicting influenza outbreaks based on climatic and environmental
factors, such as PM, s, may be important for both short- and long-term
public health planning. In the short-term, models may help predict
outbreaks days to weeks in advance, giving public health officials an
opportunity to target prevention messages and vaccine efforts. In the
long-term, models linking climatic or environmental variables to in-
fluenza outbreaks may provide a picture for what populations can ex-
pect with ongoing climate change or extreme seasonal conditions. For
example, Ford et al. (2018) projected change in PM, 5 based on prog-
nostic land-fire models for the continental US with the worst areas in
Montana forecasted to have a 5 pg/m?® increase in the annual average
per decade. Moreover, identifying the predictors of influenza, such as
long-lag PM, 5 effects, and improving upon the predictive models for
influenza, will be important for the population health, as influenza is
associated with approximately 900 hospitalizations and 60 deaths in
Montana each year (www.cdc.gov/flu/about/burden/index.htm).

CRediT authorship contribution statement

Erin L. Landguth: Conceptualization, Methodology, Writing - ori-
ginal draft, review & editing. Zachary A. Holden: Methodology,
Writing - review & editing. Jonathan Graham: Methodology, Writing -
review & editing. Benjamin Stark: Formal analysis. Elham Bayat
Mokhtari: Visualization. Emily Kaleczyc: Data curation. Stacey
Anderson: Data curation, Writing - review & editing. Shawn
Urbanski: Writing - review & editing. Matt Jolly: Writing - review &
editing. Erin Semmens: Conceptualization, Writing - review & editing.
Dyer A. Warren: Formal analysis. Alan Swanson: Formal analysis.
Emily Stone: Writine - review & editing. Curtis Noonan:
Conceptualization, Supervision, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

This research was supported by the National Institute of General
Medical Sciences of the National Institutes of Health (NIH), United
States [Award Numbers P20GM130418 and P20GM103474] and the
Office of the Director, NIH [Award Number 8UG10D024952]. MODIS
Aerosol optical thickness and gridded PM2.5 data generated for this
study is available at https://topofire.dbs.umt.edu/helmsdeepl/public_
data/air_quality.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.envint.2020.105668.

References

Abatzoglou, J.T., Williams, A.P., 2016. Impact of anthropogenic climate change on
wildfire across western US forests. Proc. Natl. Acad. Sci. 113 (11770)LP-11775.
Adetona, O., Reinhardt, T.E., Domitrovich, J., Broyles, G., Adetona, A.M., Kleinman, M.T.,
Ottmar, R.D., Naeher, L.P., 2016. Review of the health effects of wildland fire smoke

on wildland firefighters and the public. Inhal. Toxicl. 28 (3), 95-139.

Anderson, J.O., Thundiyil, J.G., Stolbach, A., 2012. Clearing the air: a review of the ef-
fects of particulate matter air pollution on human health. J. Med. Toxicol. 8,
166e175.

Armstrong, B.G., 1998. Effect of measurement error on epidemiological studies of en-
vironmental and occupational exposures. Occup. Environ. Med. 55 (10), 651-656.

Baselga-Moreno, V., Trushakova, S., McNeil, S., Sominina, A., Nunes, M.C., et al., 2019.
Influenza epidemiology and influenza vaccine effectiveness during the 2016-2017
season in the Global Influenza Hospital Surveillance Network (GIHSN). BMC Public
Health 19, 487.

Brey, S.J., Ruminski, M., Atwood, S.A., Fischer, E.V., 2018. Connecting smoke plumes to

Environment International 139 (2020) 105668

sources using Hazard Mapping System (HMS) smoke and fire location data over North
America. Atmos. Chem. Phys. 18 (3), 1745-1761. https://doi.org/10.5194/acp-18-
1745-2018.

Cauchemez, S., Valleron, A.J., Boelle, P.Y., Flahault, A., Ferguson, N.M., 2008. Estimating
the impact of school closure on influenza transmission from sentinel data. Nature
452, 750-754. https://doi.org/10.1038/nature06732.

Chu, Y., Wu, Z., Ji, J., Sun, J., Sun, X., Qin, G., Qin, J., Xiao, Z., Ren, J., Qin, D., Zheng, X.,
Wang, X., 2017. Effects of school breaks on influenza-like illness incidence in a
temperate Chinese region: an ecological study from 2008 to 2015. BMJ 7, e013159.

DeFlorio-Baker, S., Crooks, J., Reyes, J., Rappold, A.G., 2019. Cardiopulmonary effects of
fine partidculate matter exposure among older adults, during wildfire and non-
wildfire periods, in the United States 2008-2010. Environmental Health Perspectives
127, 037006-1-037006-9.

Feng, C., Li, J., Sun, W., Zhang, Y., Wang, Q., 2016. Impact of ambient fine particulate
matter (PM, s) exposure on the risk of influenza-like-illness: a time-series analysis in
Beijing. China. Environ. Health 15 (17), DOL. https://doi.org/10.1186/512940-016-
0115-2.

Finkelman, B.S., Viboud, C., Koelle, K., Ferrari, M.J., Bharti, N., Grenfell, B.T., 2007.
Global patterns in seasonal activity of influenza A/H3N2, A/HIN1, and B from 1997
to 2005: Viral coexistence and latidudinal gradients. PLoS ONE 12, e1296
www.plosone.org.

Finley, A.O., Banerjee, S., Gelfand, A., 2015. spBayes for large univariate and multivariate
point-referenced spatio-temporal data models. J. Stat. Softw. 63 (13), 1-28.

Ford, B., Val Martin, M., Zelasky, S.E., Fischer, E.V., Anenberg, S.C., Heald, C.L., Pierce,
J.R., 2018. Future fire impacts on smoke concentrations, visibility, and health in the
contiguous United States. GeoHealth. 2. https://doi.org/10.1029/2018GH000144.

Hooten, M.B., Anderson, J., Waller, L.A., 2010. Assessing North American influenza dy-
namics with a statistical SIRS model. Spatial Spatio-temporal Epidemiol. 1, 177-185.

Holden, Z.A., Abatzoglou, J.T., Luce, C.H., Baggett, L.S., 2011. Empirical downscaling of
daily minimum air temperature at very fine resolutions in complex terrain. Agric. For.
Meteorol. 151, 1066-1073.

Holden, Z.A., Swanson, A., Luce, C.H., Jolly, W.M., Maneta, M., Olyer, J.W., Warren,
D.A., Parsons, R., Affleck, D., 2018. Decreasing fire season precipitation increased
recent western US forest wildfire activity. PNAS 115, E8349-E8357.

Horne, B.D., Joy, E.A., Hofmann, M.G., Gesteland, P.H., Cannon, J.B., Lefler, J.S., Blagev,
D.P., Korgenski, E.K., Torosyan, N., Hansen, G., Kartchner, D., Pope, C.A., 2018.
Short-term elevation of fine particulate matter air pollution and acute lower re-
spiratory infection. Am. J. Respir. Crit. Care Med. 198, 759-766.

Huang, X., Mengersen, K., Milinovich, G., Hu, W., 2017. Effect of weather variability on
seasonal influenza among different age groups in Queensland, Australia: A Bayesian
spatiotemporal analysis. JID 215 (11), 1695-1701.

Kim, K.-H., Kabir, E., Kabir, S., 2015. A review on the human health impact of airborne
particulate matter. Environ Int 74, 136-143 PMID: 25454230, https://doi.org/10.
1016/j.envint.2014.10.005.

Liang, Y., Fang, L., Pan, H., Zhang, K., Kan, H., Brook, J.R., Sun, Q., 2014. PM2.5 in
Beijing — temporal pattern and its association with influenza. Environ. Health 13,
102.

Liu, J.C., Mickley, L.J., Sulprizio, M.P., Dominici, F., Yue, X., Ebisu, K., Anderson, G.B.,
Khan, R.F.A,, Bravo, M.A., Bell, M.L., 2016. Particulate air pollution from wildfires in
the Western US under climate change. Clim. Change 138 (3—4), 655-666. https://doi.
org/10.1007/5s10584-016-1762-6.

Liu, J.C., Pereira, G., Uhl, S.A., Bravo, M.A,, Bell, M.L., 2015. A systematic review of the
physical health impacts from non-occupational exposure to wildfire smoke. Environ
Res 136, 120-132. https://doi.org/10.1016/j.envres.2014.10.015. PMID: 25460628.

Lyapustrin, A., Wang, Y., Korkin, S., Huang, D., 2018. MODIS Colliection 6 MAIAC al-
gorithm. Atmos. Meas. Tech. 11, 5741-5765.

Ma, J.-H., Song, S.-H., Guo, M., Zuou, J., Liu, F., Peng, L., Fu, Z.-R., 2017. Long-term
exposure to PM2.5 lowers influenza virus resistnace via down-regulating pulmonary
macrophage Kdm6a and mediates histones modificationin IL-6 and IFN-B promoter
regions. Biochem. Biophys. Res. Commun. 493, 1122-1128.

McClure, C.D., Jaffe, D.A., 2018. US particulate matter air quality improves except in
wildfire-prone areas. PNAS. https://doi.org/10.1073/pnas.1804353115S.

Migliaccio, C.T., Kobos, E., King, Q.O., Porter, V., Jessop, F., Ward, T., 2013. Adverse
effects of wood smoke PM(2.5) exposure on macrophage functions. Inhal Toxicol. 25
(2), 67-76.

Molinari, N.M., et al., 2007. The annual impact of seasonal influenza in the US: Measuring
disease burden and costs. Vaccine 25 (27), 5086-5096.

Nychka D, Furrer R, Paige J, Sain S. 2017. Fields: Tools for spatial data. R package version
9.8-6. University Corporation for Atmospheric Research, doi:10.5065/D6W957CT.

O'Dell, K., et al., 2019. The contribution of wildland-fire smoke to US PM2.5 and its
influence on recent trends. Environ. Sci. Technol. 53, 1797-1804.

R Core Team (2019) R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria.

Reid, C.E., Brauer, B., Johnston, F.H., Jerrett, M., Balmes, J.R., Elliott, C.T., 2016. Critical
review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 124
(9), 1334-1343.

Samuelson, M., Cecilie Nygaard, U., Lovik, M., 2009. Particles from wood smoke and road
traffic differently affect the innate immune system of the lung. Inhal. Toxicol. 21 (11),
943-951.

Stacklies, W., Redestig, H., Scholz, M., Walther, D., Selbig, J., 2007. PCA Methods: a
bioconductor package providing PCA methods for incomplete data. Bioinformatics 23
(9), 1164-1167.

Stanek, L.W., Sacks, J.D., Dutton, S.J., Dubois, J.J.B., 2011. Attributing health effects to
apportioned components and sources of particulate matter: An evaluation of collec-
tive results. Atmos. Environ. 45, 5655-5663.

Tamerius, J.D., Shaman, J., Alonso, W.J., Bloom-Feshbach, K., Uejio, C.K., Comrie, A.,


http://www.cdc.gov/flu/about/burden/index.htm
https://topofire.dbs.umt.edu/helmsdeep1/public_data/air_quality
https://topofire.dbs.umt.edu/helmsdeep1/public_data/air_quality
https://doi.org/10.1016/j.envint.2020.105668
https://doi.org/10.1016/j.envint.2020.105668
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0005
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0005
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0010
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0010
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0010
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0020
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0020
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0020
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0025
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0025
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0035
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0035
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0035
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0035
https://doi.org/10.5194/acp-18-1745-2018
https://doi.org/10.5194/acp-18-1745-2018
https://doi.org/10.1038/nature06732
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0050
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0050
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0050
http://refhub.elsevier.com/S0160-4120(19)32693-5/h9015
http://refhub.elsevier.com/S0160-4120(19)32693-5/h9015
http://refhub.elsevier.com/S0160-4120(19)32693-5/h9015
http://refhub.elsevier.com/S0160-4120(19)32693-5/h9015
https://doi.org/10.1186/s12940-016-0115-2
https://doi.org/10.1186/s12940-016-0115-2
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0065
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0065
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0065
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0065
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0070
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0070
https://doi.org/10.1029/2018GH000144
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0080
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0080
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0085
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0085
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0085
http://refhub.elsevier.com/S0160-4120(19)32693-5/h9000
http://refhub.elsevier.com/S0160-4120(19)32693-5/h9000
http://refhub.elsevier.com/S0160-4120(19)32693-5/h9000
http://refhub.elsevier.com/S0160-4120(19)32693-5/h9005
http://refhub.elsevier.com/S0160-4120(19)32693-5/h9005
http://refhub.elsevier.com/S0160-4120(19)32693-5/h9005
http://refhub.elsevier.com/S0160-4120(19)32693-5/h9005
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0090
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0090
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0090
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0095
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0095
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0095
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0100
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0100
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0100
https://doi.org/10.1007/s10584-016-1762-6
https://doi.org/10.1007/s10584-016-1762-6
https://doi.org/10.1016/j.envres.2014.10.015
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0135
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0135
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0140
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0140
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0140
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0140
https://doi.org/10.1073/pnas.1804353115S
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0150
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0150
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0150
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0155
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0155
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0170
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0170
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0190
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0190
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0190
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0195
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0195
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0195
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0205
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0205
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0205
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0210
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0210
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0210

E.L. Landguth, et al.

Viboud, C., 2013. Environmental predictors of seasonal influenza epidemics across
temperate and tropical climates. PLoS Pathog. 9 (3), 1-12. https://doi.org/10.1371/
journal.ppat.1003194.

Tunno, B.J., Dalton, R., Michanowicz, D.R., Chmool, J.L.C., Kinnee, E., Tripathy, S.,
Cambal, L., Clougherty, J.E., 2016. Spatial patterning in PM2.5 constituents under an
inversion-focused sampling design across an urban area of complex terrain. J.
Exposure Sci. Environ. Epidemiol. 26, 385-396.

Urbanski, Shawn P., Reeves, Matt C., Corley, Rachel E., Hao, Wei Min, Silverstein, Robin
P, 2017. Missoula Fire Lab Emission Inventory (MFLEI) for CONUS. Forest Service
Research Data Archive, Fort Collins, CO. Updated 09 January 2018. http://doi.org/
10.2737/RDS-2017-0039.

Urbanski, S.P., Reeves, M.C., Corley, R.E., Silverstein, R.P., Hao, W.M., 2018. Contiguous

Environment International 139 (2020) 105668

United States wildland fire emission estimates during 2003-2015. Earth Syst. Sci.
Data 10 (4), 2241-2274. https://doi.org/10.5194/essd-10-2241-2018.

U.S. EPA (U.S. Environmental Protection Agency). 2009. Integrated Science Assessment
(ISA) For Particulate Matter (Final Report). EPA/600/R-08/139F.Washington, DC:U.
S. EPA.

Ward, T., Lange, T., 2010. The impact of wood smoke on ambient PM, 5 in northern
Rocky Mountain valley communities. Environ Pollut. 158, 723-729.

Westerling, A.L., Hidalgo, A.H., Cayan, D.R., Swetnam, T.W., 2006. Warming and earlier
spring increase western US forest wildfire activity. Science 313, 940-943.

Yue, X., et al., 2013. Ensemble projections of wildfire activity and carbonaceous aerosol
concentrations over the western United States in the mid-21st century. Atmos.
Environ. 77, 767-780.


https://doi.org/10.1371/journal.ppat.1003194
https://doi.org/10.1371/journal.ppat.1003194
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0220
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0220
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0220
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0220
http://doi.org/10.2737/RDS-2017-0039
http://doi.org/10.2737/RDS-2017-0039
https://doi.org/10.5194/essd-10-2241-2018
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0235
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0235
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0245
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0245
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0250
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0250
http://refhub.elsevier.com/S0160-4120(19)32693-5/h0250

	The delayed effect of wildfire season particulate matter on subsequent influenza season in a mountain west region of the USA
	Introduction
	Methods
	Influenza data
	PM2.5 model for Montana
	Statistical analysis

	Results
	Long-lag PM2.5 impacts on influenza
	Short-lag PM2.5 impacts on influenza
	Temperature impacts on influenza
	Residual autocorrelation

	Discussion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Supplementary material
	References




