Model Se in food web

Derive Se standard for water column

Observed versus Predicted selenium in Zooplankton: All water and food data

Observed versus Predicted selenium in Zooplankton: 30% Bioavailability

Derive Se standard for water column

Selenium standard derived from model using different choices of bioavailability and all particle/water ratios (Kd's)

The range of model-predicted selenium standards across 86 water and particulate ratios (Kd's) from Lake Koocanusa, comparing the MDEQ model (MDEQ presentation slide 16) to the calibrated value of 30% bioavailability.

Compare observed Se in MT waters to standard derived at 30% bioavailability using all SPM/water data in Presser and Knapf.

Comparing Tissue Thresholds: Juggled multiple coefficients

Scenario	Whole body tissue threshhold (mg/kg dw)	Diet	TTF Fish	TTF Aquatic Insects	TTF Zoo- plankton	Bio- availability	Kd percentile	Predicted dissolved water column Se (µg/L)
1	5.6	100% Aquatic Insects	1.1	2.8		45%	50th (median)	0.89
2	5.6	75% Aquatic Insects/ 25% Zooplankton	1.1	2.8	1.5	45%	50th (median)	0.91
3	5.6	100% Aquatic Insects	1.1	2.8		45%	50th (median)	0.8
4	8.5	100% Aquatic Insects	1.1	2.8		60%	75th	0.8

model outcomes

"The recommendations as to which Kd percentile to select was reliant upon the level of conservatism incorporated into *other* model parameters, particularly the whole body tissue criterion."

"There was overall agreement that if applying a lower (more conservative) whole body value, then a median (less protective) Kd *would be protective of the beneficial use*. However, if a less conservative whole body value was used, such as the 8.5 mg/kg, then a more protective percentile from the distribution would be recommended to ensure adequate protection."

Juggling model parameters to achieve a desired standard is not best practice in a science-based (model-derived) approach to deriving a standard.

CONCLUSIONS

- Model outcomes are the product of choices among data representations and model coefficients. Site-specific models must be calibrated to the site of interest.
- MDEQ (2020) presented two alternative models that resulted in the 0.8 μ g/L standard.
 - One did not consider the model coefficients best calibrated to field data.
 - That model consistently over-predicted selenium in zooplankton, benthos and fish in the lake.
 - The other juggled coefficients to yield the same results as the first approach.

Conclusions

- Outcomes based upon best modeling practices would not have unanimously supported the choice of 0.8 μ g/L as a standard.
- The chosen coefficients all yielded lower aqueous standards than would coefficients best justified by a calibrated model.

• It is inappropriate to suggest the choice of a standard was supported by the selenium bioaccumulation model, as was implied by the model's prominent position in the MDEQ (2020) guidance document.

Selenium standard derived from model using different choices of bioavailability and all particle/water ratios (Kd's)

