Cloud Seeding Feasibility Study

Water Policy Interim Committee

October 11, 2023

Michael Downey – DNRC, Water Resources Division

Photo by George Bakos - Unsplash

CLOUD SEEDING IN NORTH AMERICA

What is cloud seeding?

Clouds are made up of tiny water droplets or ice crystals that form when water vapor in the atmosphere cools and condenses around a tiny particle of dust or salt floating in the atmosphere.

Without these particles, raindrops or snowflakes cannot form and precipitation will not occur.

Cloud seeding is a technique that improves a cloud's ability to produce rain or snow by adding tiny ice nuclei into certain types of subfreezing clouds. These nuclei provide a base for snowflakes to form.

The goal of winter orographic cloud seeding is to increase snowpack (and subsequent streamflow)

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Aircraft Seeding

Demonstration of flare ignition, actual dispersion occurs in cloud

- Burn-in-Place (BIP) flares are released in cloud
 - Plane flies through cloud when conditions are sustainable for the aircraft
- Ejectable (EJ) flares are released above cloud
 - Plane flies above cloud when conditions in cloud present hazardous to the aircraft and crew

Wing mounted "Burn-in-Place" (BIP) flares

Belly Mounted Ejectable (EJ) flares

Images Courtesy of Idaho Power Company and Ice Crystal Engineering

Remote Ground Generators

Base Platform ~9 feet from ground

Images Courtesy of Idaho Power Company

How much water are we talking about?

Clouds form when invisible water vapor in the air condenses into visible water droplets or ice crystals

Nature will condense roughly 20% of the total available water vapor as moist air rises over a mountain barrier

Figure Courtesy of Idaho Power Company

How much water are we talking about?

Winter storms are typically about 30% efficient.

So only about 30% of the condensed water contained in a cloud will fall to the ground as precipitation.

That's equal to roughly 6% of the total water content in the atmospheric water budget

Figure Courtesy of Idaho Power Company

How much water are we talking about?

Cloud seeding enhances the storm's efficiency by an average of 10% to 15%.

That amount is equal to <1% of the total amount available in the atmospheric water budget.

Figure Courtesy of Idaho Power Company

IDAHO COLLABORATIVE CLOUD SEEDING PROGRAM

West Central Mountains Project

Estimated Average Additional Runoff (Unregulated) & Current Project Costs (Annually)

Boise River Basin– 273 KAF | \$910K Wood River Basin – 112 KAF | \$670K Payette River Basin* – 223 KAF | \$870K

WCM Total: 608 KAF | \$2.45M

*Independent project operated by Idaho Power Co in coordination with the Collaborative. 100% Funded by IPC.

Idaho Collaborative Cloud Seeding Program

Upper Snake River Basin Projects

Upper Snake River Basin- 632KAF | \$1.54M

Montana Feasibility Study

Study Goal #1: Assess the potential for cloud seeding to augment snowpack and subsequent streamflow in select target mountain ranges in southwestern Montana.

Study Goal #2: Complete a preliminary cost/benefit analysis and preliminary program design based upon weather/climate analysis.

Study Goal #3: Support development of public engagement and education activities and materials related to cloud seeding.

Questions/Comments?

Contact Information: Michael Downey mdowney2@mt.gov 406-444-9748